// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_system.h" #include "esp_private/system_internal.h" #include "esp_attr.h" #include "esp_efuse.h" #include "esp_log.h" #include "sdkconfig.h" #include "esp32/rom/cache.h" #include "esp_rom_uart.h" #include "soc/dport_reg.h" #include "soc/gpio_periph.h" #include "soc/efuse_periph.h" #include "soc/rtc_periph.h" #include "soc/timer_periph.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "hal/wdt_hal.h" #include "hal/cpu_hal.h" #include "freertos/xtensa_api.h" #include "soc/soc_memory_layout.h" #include "esp32/cache_err_int.h" /* "inner" restart function for after RTOS, interrupts & anything else on this * core are already stopped. Stalls other core, resets hardware, * triggers restart. */ void IRAM_ATTR esp_restart_noos(void) { // Disable interrupts xt_ints_off(0xFFFFFFFF); // Enable RTC watchdog for 1 second wdt_hal_context_t rtc_wdt_ctx; wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false); uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_SYSTEM); wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE1, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_set_flashboot_en(&rtc_wdt_ctx, true); // Reset and stall the other CPU. // CPU must be reset before stalling, in case it was running a s32c1i // instruction. This would cause memory pool to be locked by arbiter // to the stalled CPU, preventing current CPU from accessing this pool. const uint32_t core_id = cpu_hal_get_core_id(); const uint32_t other_core_id = (core_id == 0) ? 1 : 0; esp_cpu_reset(other_core_id); esp_cpu_stall(other_core_id); // Other core is now stalled, can access DPORT registers directly esp_dport_access_int_abort(); //Todo: Refactor to use Interrupt or Task Watchdog API, and a system level WDT context // Disable TG0/TG1 watchdogs wdt_hal_context_t wdt0_context = {.inst = WDT_MWDT0, .mwdt_dev = &TIMERG0}; wdt_hal_write_protect_disable(&wdt0_context); wdt_hal_disable(&wdt0_context); wdt_hal_write_protect_enable(&wdt0_context); wdt_hal_context_t wdt1_context = {.inst = WDT_MWDT1, .mwdt_dev = &TIMERG1}; wdt_hal_write_protect_disable(&wdt1_context); wdt_hal_disable(&wdt1_context); wdt_hal_write_protect_enable(&wdt1_context); // Flush any data left in UART FIFOs esp_rom_uart_tx_wait_idle(0); esp_rom_uart_tx_wait_idle(1); esp_rom_uart_tx_wait_idle(2); #ifdef CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY if (esp_ptr_external_ram(get_sp())) { // If stack_addr is from External Memory (CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY is used) // then need to switch SP to Internal Memory otherwise // we will get the "Cache disabled but cached memory region accessed" error after Cache_Read_Disable. uint32_t new_sp = SOC_DRAM_LOW + (SOC_DRAM_HIGH - SOC_DRAM_LOW) / 2; SET_STACK(new_sp); } #endif // Disable cache Cache_Read_Disable(0); Cache_Read_Disable(1); // 2nd stage bootloader reconfigures SPI flash signals. // Reset them to the defaults expected by ROM. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30); // Reset wifi/bluetooth/ethernet/sdio (bb/mac) DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST | DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST | DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST | DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST); DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0); // Reset timer/spi/uart DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, //UART TX FIFO cannot be reset correctly on ESP32, so reset the UART memory by DPORT here. DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_SPI2_RST | DPORT_SPI3_RST | DPORT_SPI_DMA_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST | DPORT_UART_MEM_RST); DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0); // Set CPU back to XTAL source, no PLL, same as hard reset rtc_clk_cpu_freq_set_xtal(); // Clear entry point for APP CPU DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0); // Reset CPUs if (core_id == 0) { // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs. esp_cpu_reset(1); esp_cpu_reset(0); } else { // Running on APP CPU: need to reset PRO CPU and unstall it, // then reset APP CPU esp_cpu_reset(0); esp_cpu_unstall(0); esp_cpu_reset(1); } while(true) { ; } } void esp_chip_info(esp_chip_info_t* out_info) { uint32_t efuse_rd3 = REG_READ(EFUSE_BLK0_RDATA3_REG); memset(out_info, 0, sizeof(*out_info)); out_info->model = CHIP_ESP32; out_info->revision = esp_efuse_get_chip_ver(); if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) { out_info->cores = 2; } else { out_info->cores = 1; } out_info->features = CHIP_FEATURE_WIFI_BGN; if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) { out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE; } uint32_t package = esp_efuse_get_pkg_ver(); if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 || package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 || package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 || package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) { out_info->features |= CHIP_FEATURE_EMB_FLASH; } } #if CONFIG_ESP32_ECO3_CACHE_LOCK_FIX inline bool soc_has_cache_lock_bug(void) { return (esp_efuse_get_chip_ver() == 3); } #endif