/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include "sdkconfig.h" #include "unity.h" #include "driver/gpio.h" #include "soc/soc_caps.h" #if SOC_SDMMC_HOST_SUPPORTED #include "driver/sdmmc_host.h" #endif #include "driver/sdspi_host.h" #include "driver/sdmmc_defs.h" #include "sdmmc_cmd.h" #include "esp_log.h" #include "esp_heap_caps.h" #include "esp_rom_gpio.h" #include "test_utils.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "soc/gpio_sig_map.h" #include "soc/gpio_reg.h" // Currently no runners for S3 #define WITH_SD_TEST (SOC_SDMMC_HOST_SUPPORTED && !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3)) // Currently, no runners for S3 and C2 #define WITH_SDSPI_TEST (!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3, ESP32C2)) // Can't test eMMC (slot 0) and PSRAM together #define WITH_EMMC_TEST (SOC_SDMMC_HOST_SUPPORTED && !CONFIG_SPIRAM && !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3)) /* power supply enable pin */ #define SD_TEST_BOARD_VSEL_EN_GPIO 27 /* power supply voltage select pin */ #define SD_TEST_BOARD_VSEL_GPIO 26 #define SD_TEST_BOARD_VSEL_3V3 1 #define SD_TEST_BOARD_VSEL_1V8 0 /* time to wait for reset / power-on */ #define SD_TEST_BOARD_PWR_RST_DELAY_MS 5 #define SD_TEST_BOARD_PWR_ON_DELAY_MS 50 /* gpio which is not connected to actual CD pin, used to simulate CD behavior */ #define CD_WP_TEST_GPIO 18 /* default GPIO selection */ #ifdef CONFIG_IDF_TARGET_ESP32S2 #define SDSPI_TEST_MOSI_PIN GPIO_NUM_35 #define SDSPI_TEST_MISO_PIN GPIO_NUM_37 #define SDSPI_TEST_SCLK_PIN GPIO_NUM_36 #define SDSPI_TEST_CS_PIN GPIO_NUM_34 #elif defined(CONFIG_IDF_TARGET_ESP32C3) #define SDSPI_TEST_MOSI_PIN GPIO_NUM_4 #define SDSPI_TEST_MISO_PIN GPIO_NUM_6 #define SDSPI_TEST_SCLK_PIN GPIO_NUM_5 #define SDSPI_TEST_CS_PIN GPIO_NUM_1 #else #define SDSPI_TEST_MOSI_PIN GPIO_NUM_15 #define SDSPI_TEST_MISO_PIN GPIO_NUM_2 #define SDSPI_TEST_SCLK_PIN GPIO_NUM_14 #define SDSPI_TEST_CS_PIN GPIO_NUM_13 #endif TEST_CASE("MMC_RSP_BITS", "[sd]") { uint32_t data[2] = { 0x01234567, 0x89abcdef }; TEST_ASSERT_EQUAL_HEX32(0x7, MMC_RSP_BITS(data, 0, 4)); TEST_ASSERT_EQUAL_HEX32(0x567, MMC_RSP_BITS(data, 0, 12)); TEST_ASSERT_EQUAL_HEX32(0xf0, MMC_RSP_BITS(data, 28, 8)); TEST_ASSERT_EQUAL_HEX32(0x3, MMC_RSP_BITS(data, 1, 3)); TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5)); } #if WITH_SD_TEST || WITH_EMMC_TEST static void sd_test_board_power_on(void) { gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_OUTPUT); gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, SD_TEST_BOARD_VSEL_3V3); gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_OUTPUT); gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0); usleep(SD_TEST_BOARD_PWR_RST_DELAY_MS * 1000); gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 1); usleep(SD_TEST_BOARD_PWR_ON_DELAY_MS * 1000); } static void sd_test_board_power_off(void) { gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0); gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_INPUT); gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, 0); gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_INPUT); } static void probe_sd(int slot, int width, int freq_khz, int ddr) { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); config.slot = slot; config.max_freq_khz = freq_khz; sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); if (width == 1) { config.flags = SDMMC_HOST_FLAG_1BIT; slot_config.width = 1; } else if (width == 4) { config.flags &= ~SDMMC_HOST_FLAG_8BIT; slot_config.width = 4; } else { assert(!ddr && "host driver does not support 8-line DDR mode yet"); } if (!ddr) { config.flags &= ~SDMMC_HOST_FLAG_DDR; } TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); sdmmc_card_print_info(stdout, card); uint8_t* buffer = heap_caps_malloc(512, MALLOC_CAP_DMA); TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 0, 1)); free(buffer); TEST_ESP_OK(sdmmc_host_deinit()); free(card); sd_test_board_power_off(); } extern void sdmmc_host_get_clk_dividers(const int freq_khz, int *host_div, int *card_div); static void sd_test_check_clk_dividers(const int freq_khz, const int expected_host_div, const int expected_card_div) { printf(" %6d | %2d | %2d\n", freq_khz, expected_host_div, expected_card_div); int host_divider, card_divider; sdmmc_host_get_clk_dividers(freq_khz, &host_divider, &card_divider); TEST_ASSERT_EQUAL(host_divider, expected_host_div); TEST_ASSERT_EQUAL(card_divider, expected_card_div); } #endif //WITH_SD_TEST || WITH_EMMC_TEST #if WITH_SD_TEST TEST_CASE("probe SD, slot 1, 4-bit", "[sd][test_env=UT_T1_SDMODE]") { probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_HIGHSPEED, 0); //custom frequency test probe_sd(SDMMC_HOST_SLOT_1, 4, 10000, 0); } TEST_CASE("probe SD, slot 1, 1-bit", "[sd][test_env=UT_T1_SDMODE]") { probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_HIGHSPEED, 0); } //No runners for slot 0 TEST_CASE("probe SD, slot 0, 4-bit", "[sd][ignore]") { probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0); } TEST_CASE("probe SD, slot 0, 1-bit", "[sd][ignore]") { probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_HIGHSPEED, 0); } TEST_CASE("SD clock dividers calculation", "[sd][test_env=UT_T1_SDMODE]") { printf("Frequency (kHz) | Expected host.div | Expected card.div\n"); sd_test_check_clk_dividers(SDMMC_FREQ_PROBING, 10, 20); sd_test_check_clk_dividers(SDMMC_FREQ_DEFAULT, 8, 0); sd_test_check_clk_dividers(SDMMC_FREQ_HIGHSPEED, 4, 0); sd_test_check_clk_dividers(36000, 5, 0); sd_test_check_clk_dividers(30000, 6, 0); sd_test_check_clk_dividers(16000, 10, 0); sd_test_check_clk_dividers(10000, 2, 4); sd_test_check_clk_dividers(6000, 2, 7); sd_test_check_clk_dividers(1000, 2, 40); sd_test_check_clk_dividers(600, 2, 67); } #endif //WITH_SD_TEST #if WITH_EMMC_TEST TEST_CASE("probe eMMC, slot 0, 4-bit", "[sd][test_env=EMMC]") { //Test with SDR probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0); //Test with DDR probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 1); } TEST_CASE("probe eMMC, slot 0, 8-bit", "[sd][test_env=EMMC]") { //8-bit DDR not supported yet, test with SDR only probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_HIGHSPEED, 0); } #endif // WITH_EMMC_TEST #if WITH_SDSPI_TEST #if !WITH_SD_TEST && !WITH_EMMC_TEST static void sd_test_board_power_on(void) { // do nothing } static void sd_test_board_power_off(void) { // do nothing } #endif static void test_sdspi_init_bus(spi_host_device_t host, int mosi_pin, int miso_pin, int clk_pin, int dma_chan) { spi_bus_config_t bus_config = { .mosi_io_num = mosi_pin, .miso_io_num = miso_pin, .sclk_io_num = clk_pin, .quadwp_io_num = -1, .quadhd_io_num = -1, }; esp_err_t err = spi_bus_initialize(host, &bus_config, dma_chan); TEST_ESP_OK(err); } static void test_sdspi_deinit_bus(spi_host_device_t host) { esp_err_t err = spi_bus_free(host); TEST_ESP_OK(err); } static void probe_core(int slot, int freq_khz) { sdmmc_host_t config = SDSPI_HOST_DEFAULT(); config.slot = slot; config.max_freq_khz = freq_khz; sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); sdmmc_card_print_info(stdout, card); free(card); } static void probe_spi(int freq_khz, int pin_miso, int pin_mosi, int pin_sck, int pin_cs) { sd_test_board_power_on(); sdspi_dev_handle_t handle; sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT(); dev_config.gpio_cs = pin_cs; test_sdspi_init_bus(dev_config.host_id, pin_mosi, pin_miso, pin_sck, SPI_DMA_CH_AUTO); TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle)); probe_core(handle, freq_khz); TEST_ESP_OK(sdspi_host_deinit()); test_sdspi_deinit_bus(dev_config.host_id); sd_test_board_power_off(); } TEST_CASE("probe SD in SPI mode", "[sd][test_env=UT_T1_SPIMODE]") { probe_spi(SDMMC_FREQ_DEFAULT, SDSPI_TEST_MISO_PIN, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_SCLK_PIN, SDSPI_TEST_CS_PIN); //custom frequency test probe_spi(10000, SDSPI_TEST_MISO_PIN, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_SCLK_PIN, SDSPI_TEST_CS_PIN); } // No runner for this TEST_CASE("probe SD in SPI mode, slot 0", "[sd][ignore]") { probe_spi(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10); } #endif //WITH_SDSPI_TEST #if WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST // Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated // from 'rand' with the starting value of 'seed' static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) { srand(seed); for (size_t i = 0; i < count; ++i) { uint32_t val = rand(); memcpy(dst + i * sizeof(uint32_t), &val, sizeof(val)); } } // Check if the buffer pointed to by 'dst' contains 'count' 32-bit // ints generated from 'rand' with the starting value of 'seed' static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) { srand(seed); for (size_t i = 0; i < count; ++i) { uint32_t val; memcpy(&val, src + i * sizeof(uint32_t), sizeof(val)); TEST_ASSERT_EQUAL_HEX32(rand(), val); } } static void do_single_write_read_test(sdmmc_card_t* card, size_t start_block, size_t block_count, size_t alignment, bool performance_log) { size_t block_size = card->csd.sector_size; size_t total_size = block_size * block_count; printf(" %8d | %3d | %d | %4.1f ", start_block, block_count, alignment, total_size / 1024.0f); uint32_t* buffer = heap_caps_malloc(total_size + 4, MALLOC_CAP_DMA); size_t offset = alignment % 4; uint8_t* c_buffer = (uint8_t*) buffer + offset; fill_buffer(start_block, c_buffer, total_size / sizeof(buffer[0])); struct timeval t_start_wr; gettimeofday(&t_start_wr, NULL); TEST_ESP_OK(sdmmc_write_sectors(card, c_buffer, start_block, block_count)); struct timeval t_stop_wr; gettimeofday(&t_stop_wr, NULL); float time_wr = 1e3f * (t_stop_wr.tv_sec - t_start_wr.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_wr.tv_usec); memset(buffer, 0xbb, total_size + 4); struct timeval t_start_rd; gettimeofday(&t_start_rd, NULL); TEST_ESP_OK(sdmmc_read_sectors(card, c_buffer, start_block, block_count)); struct timeval t_stop_rd; gettimeofday(&t_stop_rd, NULL); float time_rd = 1e3f * (t_stop_rd.tv_sec - t_start_rd.tv_sec) + 1e-3f * (t_stop_rd.tv_usec - t_start_rd.tv_usec); printf(" | %6.2f | %5.2f | %6.2f | %5.2f\n", time_wr, total_size / (time_wr / 1000) / (1024 * 1024), time_rd, total_size / (time_rd / 1000) / (1024 * 1024)); check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0])); free(buffer); if (performance_log) { static const char wr_speed_str[] = "SDMMC_WR_SPEED"; static const char rd_speed_str[] = "SDMMC_RD_SPEED"; int aligned = ((alignment % 4) == 0)? 1: 0; IDF_LOG_PERFORMANCE(wr_speed_str, "%d, blk_n: %d, aligned: %d", (int)(total_size * 1000 / time_wr), block_count, aligned); IDF_LOG_PERFORMANCE(rd_speed_str, "%d, blk_n: %d, aligned: %d", (int)(total_size * 1000 / time_rd), block_count, aligned); } } typedef void (*sd_test_func_t)(sdmmc_card_t* card); static void test_read_write_performance(sdmmc_card_t* card) { sdmmc_card_print_info(stdout, card); printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n"); const int offset = 0; const bool do_log = true; //aligned do_single_write_read_test(card, offset, 1, 4, do_log); do_single_write_read_test(card, offset, 4, 4, do_log); do_single_write_read_test(card, offset, 8, 4, do_log); do_single_write_read_test(card, offset, 16, 4, do_log); do_single_write_read_test(card, offset, 32, 4, do_log); do_single_write_read_test(card, offset, 64, 4, do_log); do_single_write_read_test(card, offset, 128, 4, do_log); //unaligned do_single_write_read_test(card, offset, 1, 1, do_log); do_single_write_read_test(card, offset, 8, 1, do_log); do_single_write_read_test(card, offset, 128, 1, do_log); } static void test_read_write_with_offset(sdmmc_card_t* card) { sdmmc_card_print_info(stdout, card); printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n"); const bool no_log = false;; //aligned do_single_write_read_test(card, 1, 16, 4, no_log); do_single_write_read_test(card, 16, 32, 4, no_log); do_single_write_read_test(card, 48, 64, 4, no_log); do_single_write_read_test(card, 128, 128, 4, no_log); do_single_write_read_test(card, card->csd.capacity - 64, 32, 4, no_log); do_single_write_read_test(card, card->csd.capacity - 64, 64, 4, no_log); do_single_write_read_test(card, card->csd.capacity - 8, 1, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 1, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 4, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 8, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 16, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 32, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 64, 4, no_log); do_single_write_read_test(card, card->csd.capacity/2, 128, 4, no_log); //unaligned do_single_write_read_test(card, card->csd.capacity/2, 1, 1, no_log); do_single_write_read_test(card, card->csd.capacity/2, 8, 1, no_log); do_single_write_read_test(card, card->csd.capacity/2, 128, 1, no_log); } #endif //WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST #if WITH_SD_TEST || WITH_EMMC_TEST void sd_test_rw_blocks(int slot, int width, sd_test_func_t test_func) { sdmmc_host_t config = SDMMC_HOST_DEFAULT(); config.max_freq_khz = SDMMC_FREQ_HIGHSPEED; config.slot = slot; sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); if (width != 0) { slot_config.width = width; } if (slot_config.width == 8) { config.flags &= ~SDMMC_HOST_FLAG_DDR; } TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); test_func(card); free(card); TEST_ESP_OK(sdmmc_host_deinit()); } #endif //WITH_SD_TEST || WITH_EMMC_TEST #if WITH_SD_TEST TEST_CASE("SDMMC performance test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sd_test_rw_blocks(1, 4, test_read_write_performance); sd_test_board_power_off(); } TEST_CASE("SDMMC performance test (SD slot 1, 1 line)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sd_test_rw_blocks(1, 1, test_read_write_performance); sd_test_board_power_off(); } TEST_CASE("SDMMC test read/write with offset (SD slot 1)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sd_test_rw_blocks(1, 4, test_read_write_with_offset); sd_test_board_power_off(); } #endif //WITH_SD_TEST #if WITH_EMMC_TEST TEST_CASE("SDMMC performance test (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 4, test_read_write_performance); sd_test_board_power_off(); } TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 4, test_read_write_with_offset); sd_test_board_power_off(); } TEST_CASE("SDMMC performance test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 8, test_read_write_performance); sd_test_board_power_off(); } TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 8, test_read_write_with_offset); sd_test_board_power_off(); } #endif // WITH_EMMC_TEST #if WITH_SDSPI_TEST void sdspi_test_rw_blocks(sd_test_func_t test_func) { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_dev_handle_t handle; sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT(); dev_config.host_id = config.slot; dev_config.gpio_cs = SDSPI_TEST_CS_PIN; test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO); TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle)); // This test can only run under 20MHz on ESP32, because the runner connects the card to // non-IOMUX pins of HSPI. sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); test_func(card); TEST_ESP_OK(sdspi_host_deinit()); free(card); test_sdspi_deinit_bus(dev_config.host_id); sd_test_board_power_off(); } TEST_CASE("SDMMC performance (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]") { sdspi_test_rw_blocks(test_read_write_performance); } TEST_CASE("SDMMC test read/write with offset (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]") { sdspi_test_rw_blocks(test_read_write_with_offset); } #endif //WITH_SDSPI_TEST #if WITH_SD_TEST TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); const size_t buffer_size = 4096; const size_t block_count = buffer_size / 512; const size_t extra = 4; uint8_t* buffer = heap_caps_malloc(buffer_size + extra, MALLOC_CAP_DMA); // Check read behavior: do aligned write, then unaligned read const uint32_t seed = 0x89abcdef; fill_buffer(seed, buffer, buffer_size / sizeof(uint32_t)); TEST_ESP_OK(sdmmc_write_sectors(card, buffer, 0, block_count)); memset(buffer, 0xcc, buffer_size + extra); TEST_ESP_OK(sdmmc_read_sectors(card, buffer + 1, 0, block_count)); check_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t)); // Check write behavior: do unaligned write, then aligned read fill_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t)); TEST_ESP_OK(sdmmc_write_sectors(card, buffer + 1, 8, block_count)); memset(buffer, 0xcc, buffer_size + extra); TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 8, block_count)); check_buffer(seed, buffer, buffer_size / sizeof(uint32_t)); free(buffer); free(card); TEST_ESP_OK(sdmmc_host_deinit()); sd_test_board_power_off(); } #endif //WITH_SD_TEST #if WITH_SD_TEST || WITH_SDSPI_TEST static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config) { sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); // SDMMC host should have configured CD as input. // Enable output as well (not using the driver, to avoid touching input // enable bits). esp_rom_gpio_connect_out_signal(gpio_cd_num, SIG_GPIO_OUT_IDX, false, false); REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_cd_num)); // Check that card initialization fails if CD is high REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_cd_num)); usleep(1000); TEST_ESP_ERR(ESP_ERR_NOT_FOUND, sdmmc_card_init(config, card)); // Check that card initialization succeeds if CD is low REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_cd_num)); usleep(1000); TEST_ESP_OK(sdmmc_card_init(config, card)); free(card); } static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config) { sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); // SDMMC host should have configured WP as input. // Enable output as well (not using the driver, to avoid touching input // enable bits). esp_rom_gpio_connect_out_signal(gpio_wp_num, SIG_GPIO_OUT_IDX, false, false); REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_wp_num)); // Check that the card can be initialized with WP low REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num)); TEST_ESP_OK(sdmmc_card_init(config, card)); uint32_t* data = heap_caps_calloc(1, 512, MALLOC_CAP_DMA); // Check that card write succeeds if WP is high REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_wp_num)); usleep(1000); TEST_ESP_OK(sdmmc_write_sectors(card, &data, 0, 1)); // Check that write fails if WP is low REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num)); usleep(1000); TEST_ESP_ERR(ESP_ERR_INVALID_STATE, sdmmc_write_sectors(card, &data, 0, 1)); // ...but reads still work TEST_ESP_OK(sdmmc_read_sectors(card, &data, 0, 1)); free(data); free(card); } #endif //WITH_SD_TEST || WITH_SDSPI_TEST #if WITH_SD_TEST TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); slot_config.gpio_cd = CD_WP_TEST_GPIO; TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config)); test_cd_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdmmc_host_deinit()); sd_test_board_power_off(); } TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); slot_config.gpio_wp = CD_WP_TEST_GPIO; TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config)); test_wp_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdmmc_host_deinit()); sd_test_board_power_off(); } #endif //WITH_SD_TEST #if WITH_SDSPI_TEST TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_dev_handle_t handle; sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT(); dev_config.host_id = config.slot; dev_config.gpio_cs = SDSPI_TEST_CS_PIN; dev_config.gpio_cd = CD_WP_TEST_GPIO; test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO); TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle)); config.slot = handle; test_cd_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdspi_host_deinit()); test_sdspi_deinit_bus(dev_config.host_id); sd_test_board_power_off(); } TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_dev_handle_t handle; sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT(); dev_config.host_id = config.slot; dev_config.gpio_cs = SDSPI_TEST_CS_PIN; dev_config.gpio_wp = CD_WP_TEST_GPIO; test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO); TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle)); config.slot = handle; test_wp_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdspi_host_deinit()); test_sdspi_deinit_bus(dev_config.host_id); sd_test_board_power_off(); } #endif //WITH_SDSPI_TEST #if WITH_SD_TEST || WITH_EMMC_TEST #define PATTERN_SEED 0x12345678 #define FLAG_ERASE_TEST_ADJACENT (1 << 0) #define FLAG_VERIFY_ERASE_STATE (1 << 1) bool do_sanitize_flag = false; static void ensure_sector_written(sdmmc_card_t* card, size_t sector, uint8_t *pattern_buf, uint8_t *temp_buf) { size_t block_size = card->csd.sector_size; TEST_ESP_OK(sdmmc_write_sectors(card, pattern_buf, sector, 1)); memset((void *)temp_buf, 0x00, block_size); TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, sector, 1)); check_buffer(PATTERN_SEED, temp_buf, block_size / sizeof(uint32_t)); } static void ensure_sector_intact(sdmmc_card_t* card, size_t sector, uint8_t *pattern_buf, uint8_t *temp_buf) { size_t block_size = card->csd.sector_size; memset((void *)temp_buf, 0x00, block_size); TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, sector, 1)); check_buffer(PATTERN_SEED, temp_buf, block_size / sizeof(uint32_t)); } static int32_t ensure_sector_erase(sdmmc_card_t* card, size_t sector, uint8_t *pattern_buf, uint8_t *temp_buf) { size_t block_size = card->csd.sector_size; memset((void *)temp_buf, 0, block_size); TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, sector, 1)); return memcmp(pattern_buf, temp_buf, block_size); } static void do_single_erase_test(sdmmc_card_t* card, size_t start_block, size_t block_count, uint8_t flags, sdmmc_erase_arg_t arg) { size_t block_size = card->csd.sector_size; uint8_t *temp_buf = NULL; uint8_t *pattern_buf = NULL; size_t end_block = (start_block + block_count - 1); /* * To ensure erase is successful/valid * selected blocks after erase should have erase state data pattern * data of blocks adjacent to selected region should remain intact */ TEST_ESP_OK((start_block + block_count) > card->csd.capacity); pattern_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA); TEST_ASSERT_NOT_NULL(pattern_buf); temp_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA); TEST_ASSERT_NOT_NULL(temp_buf); // create pattern buffer fill_buffer(PATTERN_SEED, pattern_buf, block_size / sizeof(uint32_t)); // check if it's not the first block of device & write/read/verify pattern if ((flags & FLAG_ERASE_TEST_ADJACENT) && start_block) { ensure_sector_written(card, (start_block - 1), pattern_buf, temp_buf); } ensure_sector_written(card, start_block, pattern_buf, temp_buf); // check if it's not the last block of device & write/read/verify pattern if ((flags & FLAG_ERASE_TEST_ADJACENT) && (end_block < (card->csd.capacity - 1))) { ensure_sector_written(card, (end_block + 1), pattern_buf, temp_buf); } // when block count is 1, start and end block is same, hence skip if (block_count != 1) { ensure_sector_written(card, end_block, pattern_buf, temp_buf); } // fill pattern to (start_block + end_block)/2 in the erase range if(block_count > 2) { ensure_sector_written(card, (start_block + end_block)/2, pattern_buf, temp_buf); } float total_size = (block_count/1024.0f) * block_size; printf(" %10d | %10d | %8.1f ", start_block, block_count, total_size); fflush(stdout); // erase the blocks struct timeval t_start_er; gettimeofday(&t_start_er, NULL); TEST_ESP_OK(sdmmc_erase_sectors(card, start_block, block_count, arg)); if (do_sanitize_flag) { TEST_ESP_OK(sdmmc_mmc_sanitize(card, block_count * 500)); } struct timeval t_stop_wr; gettimeofday(&t_stop_wr, NULL); float time_er = 1e3f * (t_stop_wr.tv_sec - t_start_er.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_er.tv_usec); printf(" | %8.2f\n", time_er); // ensure adjacent blocks are not affected // block before start_block if ((flags & FLAG_ERASE_TEST_ADJACENT) && start_block) { ensure_sector_intact(card, (start_block - 1), pattern_buf, temp_buf); } // block after end_block if ((flags & FLAG_ERASE_TEST_ADJACENT) && (end_block < (card->csd.capacity - 1))) { ensure_sector_intact(card, (end_block + 1), pattern_buf, temp_buf); } uint8_t erase_mem_byte = 0xFF; // ensure all the blocks are erased and are up to after erase state. if (!card->is_mmc) { erase_mem_byte = card->scr.erase_mem_state ? 0xFF : 0x00; } else { erase_mem_byte = card->ext_csd.erase_mem_state ? 0xFF : 0x00; } memset((void *)pattern_buf, erase_mem_byte, block_size); // as it is block by block comparison, a time taking process. Really long // when you do erase and verify on complete device. if (flags & FLAG_VERIFY_ERASE_STATE) { for (size_t i = 0; i < block_count; i++) { if (ensure_sector_erase(card, (start_block + i), pattern_buf, temp_buf)) { printf("Error: Sector %d erase\n", (start_block + i)); break; } } } free(temp_buf); free(pattern_buf); } #endif // WITH_SD_TEST || WITH_EMMC_TEST #if WITH_SDSPI_TEST static void test_sdspi_erase_blocks(size_t start_block, size_t block_count) { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_dev_handle_t handle; sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT(); dev_config.host_id = config.slot; dev_config.gpio_cs = SDSPI_TEST_CS_PIN; test_sdspi_init_bus(dev_config.host_id, SDSPI_TEST_MOSI_PIN, SDSPI_TEST_MISO_PIN, SDSPI_TEST_SCLK_PIN, SPI_DMA_CH_AUTO); TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle)); // This test can only run under 20MHz on ESP32, because the runner connects the card to // non-IOMUX pins of HSPI. sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); sdmmc_card_print_info(stdout, card); // Ensure discard operation is not supported in sdspi TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, start_block, block_count, SDMMC_DISCARD_ARG)); printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity); printf("Erasing sectors %d-%d\n", start_block, (start_block + block_count -1)); size_t block_size = card->csd.sector_size; uint8_t *pattern_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA); TEST_ASSERT_NOT_NULL(pattern_buf); uint8_t *temp_buf = (uint8_t *)heap_caps_malloc(block_size, MALLOC_CAP_DMA); TEST_ASSERT_NOT_NULL(temp_buf); struct timeval t_start_er; gettimeofday(&t_start_er, NULL); TEST_ESP_OK(sdmmc_erase_sectors(card, start_block, block_count, SDMMC_ERASE_ARG)); struct timeval t_stop_wr; gettimeofday(&t_stop_wr, NULL); float time_er = 1e3f * (t_stop_wr.tv_sec - t_start_er.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_er.tv_usec); printf("Erase duration: %.2fms\n", time_er); printf("Verifying erase state...\n"); uint8_t erase_mem_byte = 0xFF; // ensure all the blocks are erased and are up to after erase state. if (!card->is_mmc) { erase_mem_byte = card->scr.erase_mem_state ? 0xFF : 0x00; } else { erase_mem_byte = card->ext_csd.erase_mem_state ? 0xFF : 0x00; } memset((void *)pattern_buf, erase_mem_byte, block_size); size_t i; for (i = 0; i < block_count; i++) { memset((void *)temp_buf, 0, block_size); TEST_ESP_OK(sdmmc_read_sectors(card, temp_buf, (start_block + i), 1)); if (memcmp(pattern_buf, temp_buf, block_size)) { printf("Error: Sector %d erase\n", (start_block + i)); break; } } if (i == block_count) { printf("Sectors erase success\n"); } TEST_ESP_OK(sdspi_host_deinit()); test_sdspi_deinit_bus(dev_config.host_id); free(card); free(temp_buf); free(pattern_buf); sd_test_board_power_off(); } TEST_CASE("SDMMC erase (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]") { test_sdspi_erase_blocks(0, 16); } #endif // WITH_SDSPI_TEST #if WITH_SD_TEST static void test_sd_erase_blocks(sdmmc_card_t* card) { sdmmc_card_print_info(stdout, card); printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity); printf(" sector | count | size(kB) | er_time(ms) \n"); /* * bit-0: verify adjacent blocks of given range * bit-1: verify erase state of blocks in range */ uint8_t flags = 0; sdmmc_erase_arg_t arg = SDMMC_ERASE_ARG; //check for adjacent blocks and erase state of blocks flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT | (uint8_t)FLAG_VERIFY_ERASE_STATE; do_single_erase_test(card, 1, 16, flags, arg); do_single_erase_test(card, 1, 13, flags, arg); do_single_erase_test(card, 16, 32, flags, arg); do_single_erase_test(card, 48, 64, flags, arg); do_single_erase_test(card, 128, 128, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg); // single sector erase is failing on different make cards do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg); #ifdef SDMMC_FULL_ERASE_TEST /* * check for adjacent blocks, do not check erase state of blocks as it is * time taking process to verify all the blocks. */ flags &= ~(uint8_t)FLAG_VERIFY_ERASE_STATE; //comment this line to verify after-erase state // erase complete card do_single_erase_test(card, 0, card->csd.capacity, flags, arg); #endif //SDMMC_FULL_ERASE_TEST } static void test_sd_discard_blocks(sdmmc_card_t* card) { /* MMC discard applies to write blocks */ sdmmc_card_print_info(stdout, card); /* * bit-0: verify adjacent blocks of given range * bit-1: verify erase state of blocks in range */ uint8_t flags = 0; sdmmc_erase_arg_t arg = SDMMC_DISCARD_ARG; /* * This test does run two tests * test-1: check, sdmmc_erase_sectors to return ESP_ERR_NOT_SUPPORTED * when arguments are condition not met. This test runs either the card * supports discard or not. * * test-2: If card supports discard, perform the test accordingly and * validate the behavior. * */ uint32_t prev_discard_support = card->ssr.discard_support; // overwrite discard_support as not-supported for -ve test card->ssr.discard_support = 0; TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, 0, 32, arg)); // restore discard_support card->ssr.discard_support = prev_discard_support; if (sdmmc_can_discard(card) != ESP_OK ) { printf("Card/device do not support discard\n"); return; } printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity); printf(" sector | count | size(kB) | er_time(ms) \n"); /* * Check for adjacent blocks only. * After discard operation, the original data may be remained partially or * fully accessible to the host dependent on device. Hence do not verify * the erased state of the blocks. */ flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT; do_single_erase_test(card, 1, 16, flags, arg); do_single_erase_test(card, 1, 13, flags, arg); do_single_erase_test(card, 16, 32, flags, arg); do_single_erase_test(card, 48, 64, flags, arg); do_single_erase_test(card, 128, 128, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg); do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg); } TEST_CASE("SDMMC erase test (SD slot 1, 1 line)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sd_test_rw_blocks(1, 1, test_sd_erase_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC erase test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sd_test_rw_blocks(1, 4, test_sd_erase_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC discard test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sd_test_rw_blocks(1, 4, test_sd_discard_blocks); sd_test_board_power_off(); } #endif //WITH_SD_TEST #if WITH_EMMC_TEST static void test_mmc_sanitize_blocks(sdmmc_card_t* card) { /* MMC discard applies to write blocks */ sdmmc_card_print_info(stdout, card); printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity); if (sdmmc_mmc_can_sanitize(card)) { printf("Card/device do not support sanitize\n"); return; } printf(" sector | count | size(kB) | er_time(ms) \n"); /* * bit-0: verify adjacent blocks of given range * bit-1: verify erase state of blocks in range */ uint8_t flags = 0; sdmmc_erase_arg_t arg = SDMMC_DISCARD_ARG; do_sanitize_flag = true; /* * Check for adjacent blocks only. * After discard operation, the original data may be remained partially or * fully accessible to the host dependent on device. Hence do not verify * the erased state of the blocks. * * Note: After sanitize blocks has to be in erased state */ flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT | (uint8_t)FLAG_VERIFY_ERASE_STATE; do_single_erase_test(card, 1, 16, flags, arg); do_single_erase_test(card, 1, 13, flags, arg); do_single_erase_test(card, 16, 32, flags, arg); do_single_erase_test(card, 48, 64, flags, arg); do_single_erase_test(card, 128, 128, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg); do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg); do_sanitize_flag = false; } static void test_mmc_discard_blocks(sdmmc_card_t* card) { /* MMC discard applies to write blocks */ sdmmc_card_print_info(stdout, card); printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity); sdmmc_erase_arg_t arg = SDMMC_DISCARD_ARG; uint32_t prev_ext_csd = card->ext_csd.rev; // overwrite discard_support as not-supported for -ve test card->ext_csd.rev = 0; TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, 0, 32, arg)); // restore discard_support card->ext_csd.rev = prev_ext_csd; if (sdmmc_can_discard(card) != ESP_OK) { printf("Card/device do not support discard\n"); return; } printf(" sector | count | size(kB) | er_time(ms) \n"); /* * bit-0: verify adjacent blocks of given range * bit-1: verify erase state of blocks in range */ uint8_t flags = 0; /* * Check for adjacent blocks only. * After discard operation, the original data may be remained partially or * fully accessible to the host dependent on device. Hence do not verify * the erased state of the blocks. */ flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT; do_single_erase_test(card, 1, 16, flags, arg); do_single_erase_test(card, 1, 13, flags, arg); do_single_erase_test(card, 16, 32, flags, arg); do_single_erase_test(card, 48, 64, flags, arg); do_single_erase_test(card, 128, 128, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg); do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg); } static void test_mmc_trim_blocks(sdmmc_card_t* card) { /* MMC trim applies to write blocks */ sdmmc_card_print_info(stdout, card); printf("block size %d capacity %d\n", card->csd.sector_size, card->csd.capacity); sdmmc_erase_arg_t arg = SDMMC_ERASE_ARG; uint8_t prev_sec_feature = card->ext_csd.sec_feature; // overwrite sec_feature card->ext_csd.sec_feature &= ~(EXT_CSD_SEC_GB_CL_EN); TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, sdmmc_erase_sectors(card, 0, 32, arg)); // restore sec_feature card->ext_csd.sec_feature = prev_sec_feature; if (sdmmc_can_trim(card) != ESP_OK) { printf("Card/device do not support trim\n"); return; } printf(" sector | count | size(kB) | er_time(ms) \n"); /* * bit-0: verify adjacent blocks of given range * bit-1: verify erase state of blocks in range */ uint8_t flags = 0; //check for adjacent blocks and erase state of blocks flags |= (uint8_t)FLAG_ERASE_TEST_ADJACENT | (uint8_t)FLAG_VERIFY_ERASE_STATE; do_single_erase_test(card, 1, 16, flags, arg); do_single_erase_test(card, 1, 13, flags, arg); do_single_erase_test(card, 16, 32, flags, arg); do_single_erase_test(card, 48, 64, flags, arg); do_single_erase_test(card, 128, 128, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 32, flags, arg); do_single_erase_test(card, card->csd.capacity - 64, 64, flags, arg); do_single_erase_test(card, card->csd.capacity - 8, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 1, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 4, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 8, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 16, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 32, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 64, flags, arg); do_single_erase_test(card, card->csd.capacity/2, 128, flags, arg); #ifdef SDMMC_FULL_ERASE_TEST /* * check for adjacent blocks, do not check erase state of blocks as it is * time taking process to verify all the blocks. */ flags &= ~(uint8_t)FLAG_VERIFY_ERASE_STATE; //comment this line to verify after erase state // erase complete card do_single_erase_test(card, 0, card->csd.capacity, flags, arg); #endif //SDMMC_FULL_ERASE_TEST } TEST_CASE("SDMMC trim test (eMMC slot 0, 4 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 4, test_mmc_trim_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC trim test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 8, test_mmc_trim_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC discard test (eMMC slot 0, 4 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 4, test_mmc_discard_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC discard test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 8, test_mmc_discard_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC sanitize test (eMMC slot 0, 4 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 4, test_mmc_sanitize_blocks); sd_test_board_power_off(); } TEST_CASE("SDMMC sanitize test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); sd_test_rw_blocks(0, 8, test_mmc_sanitize_blocks); sd_test_board_power_off(); } #endif //WITH_EMMC_TEST