/****************************************************************************** * * Copyright (C) 1999-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /****************************************************************************** * * This file contains functions for BLE device control utilities, and LE * security functions. * ******************************************************************************/ #include "common/bt_target.h" #include #include "stack/bt_types.h" #include "stack/hcimsgs.h" #include "stack/btu.h" #include "btm_int.h" #include "stack/btm_ble_api.h" #include "stack/smp_api.h" #include "l2c_int.h" #include "stack/gap_api.h" //#include "bt_utils.h" #include "device/controller.h" //#define LOG_TAG "bt_btm_ble" //#include "osi/include/log.h" #if BLE_INCLUDED == TRUE extern void BTM_UpdateAddrInfor(uint8_t addr_type, BD_ADDR bda); #if SMP_INCLUDED == TRUE // The temp variable to pass parameter between functions when in the connected event callback. static BOOLEAN temp_enhanced = FALSE; extern BOOLEAN aes_cipher_msg_auth_code(BT_OCTET16 key, UINT8 *input, UINT16 length, UINT16 tlen, UINT8 *p_signature); extern void smp_link_encrypted(BD_ADDR bda, UINT8 encr_enable); extern BOOLEAN smp_proc_ltk_request(BD_ADDR bda); #endif extern void gatt_notify_enc_cmpl(BD_ADDR bd_addr); /*******************************************************************************/ /* External Function to be called by other modules */ /*******************************************************************************/ /******************************************************** ** ** Function BTM_SecAddBleDevice ** ** Description Add/modify device. This function will be normally called ** during host startup to restore all required information ** for a LE device stored in the NVRAM. ** ** Parameters: bd_addr - BD address of the peer ** bd_name - Name of the peer device. NULL if unknown. ** dev_type - Remote device's device type. ** addr_type - LE device address type. ** auth_mode - auth mode ** ** Returns TRUE if added OK, else FALSE ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) BOOLEAN BTM_SecAddBleDevice (BD_ADDR bd_addr, BD_NAME bd_name, tBT_DEVICE_TYPE dev_type, tBLE_ADDR_TYPE addr_type, UINT32 auth_mode) { tBTM_SEC_DEV_REC *p_dev_rec; tBTM_INQ_INFO *p_info = NULL; BTM_TRACE_DEBUG ("BTM_SecAddBleDevice dev_type=0x%x", dev_type); p_dev_rec = btm_find_dev (bd_addr); if (!p_dev_rec) { BTM_TRACE_DEBUG("Add a new device"); /* There is no device record, allocate one. * If we can not find an empty spot for this one, let it fail. */ if (list_length(btm_cb.p_sec_dev_rec_list) < BTM_SEC_MAX_DEVICE_RECORDS) { p_dev_rec = (tBTM_SEC_DEV_REC *)osi_malloc(sizeof(tBTM_SEC_DEV_REC)); if(p_dev_rec) { list_append(btm_cb.p_sec_dev_rec_list, p_dev_rec); BTM_TRACE_DEBUG ("allocate a new dev rec idx=0x%x\n", list_length(btm_cb.p_sec_dev_rec_list)); /* Mark this record as in use and initialize */ memset (p_dev_rec, 0, sizeof (tBTM_SEC_DEV_REC)); p_dev_rec->sec_flags = BTM_SEC_IN_USE; memcpy (p_dev_rec->bd_addr, bd_addr, BD_ADDR_LEN); p_dev_rec->hci_handle = BTM_GetHCIConnHandle (bd_addr, BT_TRANSPORT_BR_EDR); p_dev_rec->ble_hci_handle = BTM_GetHCIConnHandle (bd_addr, BT_TRANSPORT_LE); /* update conn params, use default value for background connection params */ p_dev_rec->conn_params.min_conn_int = p_dev_rec->conn_params.max_conn_int = p_dev_rec->conn_params.supervision_tout = p_dev_rec->conn_params.slave_latency = BTM_BLE_CONN_PARAM_UNDEF; BTM_TRACE_DEBUG ("hci_handl=0x%x ", p_dev_rec->ble_hci_handle ); } } if (!p_dev_rec) { return (FALSE); } } else { BTM_TRACE_DEBUG("Device already exist"); } memset(p_dev_rec->sec_bd_name, 0, sizeof(tBTM_BD_NAME)); if (bd_name && bd_name[0]) { p_dev_rec->sec_flags |= BTM_SEC_NAME_KNOWN; BCM_STRNCPY_S ((char *)p_dev_rec->sec_bd_name, (char *)bd_name, BTM_MAX_REM_BD_NAME_LEN); } p_dev_rec->device_type |= dev_type; p_dev_rec->ble.ble_addr_type = addr_type; p_dev_rec->ble.auth_mode = auth_mode; memcpy (p_dev_rec->ble.pseudo_addr, bd_addr, BD_ADDR_LEN); /* sync up with the Inq Data base*/ p_info = BTM_InqDbRead(bd_addr); if (p_info) { p_info->results.ble_addr_type = p_dev_rec->ble.ble_addr_type ; p_info->results.device_type = p_dev_rec->device_type; BTM_TRACE_DEBUG ("InqDb device_type =0x%x addr_type=0x%x", p_info->results.device_type, p_info->results.ble_addr_type); } return (TRUE); } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function BTM_SecAddBleKey ** ** Description Add/modify LE device information. This function will be ** normally called during host startup to restore all required ** information stored in the NVRAM. ** ** Parameters: bd_addr - BD address of the peer ** p_le_key - LE key values. ** key_type - LE SMP key type. * ** Returns TRUE if added OK, else FALSE ** *******************************************************************************/ #if SMP_INCLUDED == TRUE BOOLEAN BTM_SecAddBleKey (BD_ADDR bd_addr, tBTM_LE_KEY_VALUE *p_le_key, tBTM_LE_KEY_TYPE key_type) { tBTM_SEC_DEV_REC *p_dev_rec; BTM_TRACE_DEBUG ("BTM_SecAddBleKey"); p_dev_rec = btm_find_dev (bd_addr); if (!p_dev_rec || !p_le_key || (key_type != BTM_LE_KEY_PENC && key_type != BTM_LE_KEY_PID && key_type != BTM_LE_KEY_PCSRK && key_type != BTM_LE_KEY_LENC && key_type != BTM_LE_KEY_LCSRK && key_type != BTM_LE_KEY_LID)) { BTM_TRACE_WARNING ("BTM_SecAddBleKey() Wrong Type, or No Device record \ for bdaddr: %08x%04x, Type: %d", (bd_addr[0] << 24) + (bd_addr[1] << 16) + (bd_addr[2] << 8) + bd_addr[3], (bd_addr[4] << 8) + bd_addr[5], key_type); return (FALSE); } BTM_TRACE_DEBUG ("BTM_SecAddLeKey() BDA: %08x%04x, Type: 0x%02x", (bd_addr[0] << 24) + (bd_addr[1] << 16) + (bd_addr[2] << 8) + bd_addr[3], (bd_addr[4] << 8) + bd_addr[5], key_type); btm_sec_save_le_key (bd_addr, key_type, p_le_key, FALSE); #if (BLE_PRIVACY_SPT == TRUE) if (key_type == BTM_LE_KEY_PID || key_type == BTM_LE_KEY_LID) { btm_ble_resolving_list_load_dev (p_dev_rec); } #endif return (TRUE); } #endif /******************************************************************************* ** ** Function BTM_BleLoadLocalKeys ** ** Description Local local identity key, encryption root or sign counter. ** ** Parameters: key_type: type of key, can be BTM_BLE_KEY_TYPE_ID, BTM_BLE_KEY_TYPE_ER ** or BTM_BLE_KEY_TYPE_COUNTER. ** p_key: pointer to the key. * ** Returns non2. ** *******************************************************************************/ void BTM_BleLoadLocalKeys(UINT8 key_type, tBTM_BLE_LOCAL_KEYS *p_key) { tBTM_DEVCB *p_devcb = &btm_cb.devcb; BTM_TRACE_DEBUG ("%s", __func__); if (p_key != NULL) { switch (key_type) { case BTM_BLE_KEY_TYPE_ID: memcpy(&p_devcb->id_keys, &p_key->id_keys, sizeof(tBTM_BLE_LOCAL_ID_KEYS)); break; case BTM_BLE_KEY_TYPE_ER: memcpy(p_devcb->ble_encryption_key_value, p_key->er, sizeof(BT_OCTET16)); break; default: BTM_TRACE_ERROR("unknown local key type: %d", key_type); break; } } } /******************************************************************************* ** ** Function BTM_GetDeviceEncRoot ** ** Description This function is called to read the local device encryption ** root. ** ** Returns void ** the local device ER is copied into ble_encr_key_value ** *******************************************************************************/ void BTM_GetDeviceEncRoot (BT_OCTET16 ble_encr_key_value) { BTM_TRACE_DEBUG ("%s", __func__); memcpy (ble_encr_key_value, btm_cb.devcb.ble_encryption_key_value, BT_OCTET16_LEN); } /******************************************************************************* ** ** Function BTM_GetDeviceIDRoot ** ** Description This function is called to read the local device identity ** root. ** ** Returns void ** the local device IR is copied into irk ** *******************************************************************************/ void BTM_GetDeviceIDRoot (BT_OCTET16 irk) { BTM_TRACE_DEBUG ("BTM_GetDeviceIDRoot "); memcpy (irk, btm_cb.devcb.id_keys.irk, BT_OCTET16_LEN); } /******************************************************************************* ** ** Function BTM_GetDeviceDHK ** ** Description This function is called to read the local device DHK. ** ** Returns void ** the local device DHK is copied into dhk ** *******************************************************************************/ void BTM_GetDeviceDHK (BT_OCTET16 dhk) { BTM_TRACE_DEBUG ("BTM_GetDeviceDHK"); memcpy (dhk, btm_cb.devcb.id_keys.dhk, BT_OCTET16_LEN); } /******************************************************************************* ** ** Function BTM_ReadConnectionAddr ** ** Description This function is called to get the local device address information ** . ** ** Returns void ** *******************************************************************************/ void BTM_ReadConnectionAddr (BD_ADDR remote_bda, BD_ADDR local_conn_addr, tBLE_ADDR_TYPE *p_addr_type) { tACL_CONN *p_acl = btm_bda_to_acl(remote_bda, BT_TRANSPORT_LE); if (p_acl == NULL) { BTM_TRACE_ERROR("No connection exist!"); return; } memcpy(local_conn_addr, p_acl->conn_addr, BD_ADDR_LEN); * p_addr_type = p_acl->conn_addr_type; BTM_TRACE_DEBUG ("BTM_ReadConnectionAddr address type: %d addr: 0x%02x", p_acl->conn_addr_type, p_acl->conn_addr[0]); } /******************************************************************************* ** ** Function BTM_IsBleConnection ** ** Description This function is called to check if the connection handle ** for an LE link ** ** Returns TRUE if connection is LE link, otherwise FALSE. ** *******************************************************************************/ BOOLEAN BTM_IsBleConnection (UINT16 conn_handle) { #if (BLE_INCLUDED == TRUE) tACL_CONN *p; BTM_TRACE_API ("BTM_IsBleConnection: conn_handle: %d", conn_handle); p = btm_handle_to_acl(conn_handle); if (!p) { return FALSE; } return (p->transport == BT_TRANSPORT_LE); #else return FALSE; #endif } /******************************************************************************* ** ** Function BTM_ReadRemoteConnectionAddr ** ** Description This function is read the remote device address currently used ** ** Parameters pseudo_addr: pseudo random address available ** conn_addr:connection address used ** p_addr_type : BD Address type, Public or Random of the address used ** ** Returns BOOLEAN , TRUE if connection to remote device exists, else FALSE ** *******************************************************************************/ BOOLEAN BTM_ReadRemoteConnectionAddr(BD_ADDR pseudo_addr, BD_ADDR conn_addr, tBLE_ADDR_TYPE *p_addr_type) { BOOLEAN st = TRUE; #if (BLE_PRIVACY_SPT == TRUE) tACL_CONN *p = btm_bda_to_acl (pseudo_addr, BT_TRANSPORT_LE); if (p == NULL) { BTM_TRACE_ERROR("BTM_ReadRemoteConnectionAddr can not find connection" " with matching address"); return FALSE; } memcpy(conn_addr, p->active_remote_addr, BD_ADDR_LEN); *p_addr_type = p->active_remote_addr_type; #else tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev(pseudo_addr); memcpy(conn_addr, pseudo_addr, BD_ADDR_LEN); if (p_dev_rec != NULL) { *p_addr_type = p_dev_rec->ble.ble_addr_type; } #endif return st; } /******************************************************************************* ** ** Function BTM_SecurityGrant ** ** Description This function is called to grant security process. ** ** Parameters bd_addr - peer device bd address. ** res - result of the operation BTM_SUCCESS if success. ** Otherwise, BTM_REPEATED_ATTEMPTS is too many attempts. ** ** Returns None ** *******************************************************************************/ void BTM_SecurityGrant(BD_ADDR bd_addr, UINT8 res) { #if SMP_INCLUDED == TRUE tSMP_STATUS res_smp = (res == BTM_SUCCESS) ? SMP_SUCCESS : SMP_REPEATED_ATTEMPTS; BTM_TRACE_DEBUG ("BTM_SecurityGrant"); SMP_SecurityGrant(bd_addr, res_smp); #endif } /******************************************************************************* ** ** Function BTM_BlePasskeyReply ** ** Description This function is called after Security Manager submitted ** passkey request to the application. ** ** Parameters: bd_addr - Address of the device for which passkey was requested ** res - result of the operation BTM_SUCCESS if success ** key_len - length in bytes of the Passkey ** p_passkey - pointer to array with the passkey ** trusted_mask - bitwise OR of trusted services (array of UINT32) ** *******************************************************************************/ void BTM_BlePasskeyReply (BD_ADDR bd_addr, UINT8 res, UINT32 passkey) { #if SMP_INCLUDED == TRUE tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); tSMP_STATUS res_smp = (res == BTM_SUCCESS) ? SMP_SUCCESS : SMP_PASSKEY_ENTRY_FAIL; if (p_dev_rec == NULL) { BTM_TRACE_ERROR("Passkey reply to Unknown device"); return; } p_dev_rec->sec_flags |= BTM_SEC_LE_AUTHENTICATED; BTM_TRACE_DEBUG ("BTM_BlePasskeyReply"); SMP_PasskeyReply(bd_addr, res_smp, passkey); #endif } /******************************************************************************* ** ** Function BTM_BleSetStaticPasskey ** ** Description This function is called to set static passkey ** ** ** Parameters: add - set static passkey when add is TRUE ** clear static passkey when add is FALSE ** passkey - static passkey ** ** *******************************************************************************/ void BTM_BleSetStaticPasskey(BOOLEAN add, UINT32 passkey) { #if SMP_INCLUDED == TRUE SMP_SetStaticPasskey(add, passkey); #endif } /******************************************************************************* ** ** Function BTM_BleConfirmReply ** ** Description This function is called after Security Manager submitted ** numeric comparison request to the application. ** ** Parameters: bd_addr - Address of the device with which numeric ** comparison was requested ** res - comparison result BTM_SUCCESS if success ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) void BTM_BleConfirmReply (BD_ADDR bd_addr, UINT8 res) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); tSMP_STATUS res_smp = (res == BTM_SUCCESS) ? SMP_SUCCESS : SMP_PASSKEY_ENTRY_FAIL; if (p_dev_rec == NULL) { BTM_TRACE_ERROR("Passkey reply to Unknown device"); return; } p_dev_rec->sec_flags |= BTM_SEC_LE_AUTHENTICATED; BTM_TRACE_DEBUG ("%s\n", __func__); SMP_ConfirmReply(bd_addr, res_smp); } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function BTM_BleOobDataReply ** ** Description This function is called to provide the OOB data for ** SMP in response to BTM_LE_OOB_REQ_EVT ** ** Parameters: bd_addr - Address of the peer device ** res - result of the operation SMP_SUCCESS if success ** p_data - simple pairing Randomizer C. ** *******************************************************************************/ void BTM_BleOobDataReply(BD_ADDR bd_addr, UINT8 res, UINT8 len, UINT8 *p_data) { #if SMP_INCLUDED == TRUE tSMP_STATUS res_smp = (res == BTM_SUCCESS) ? SMP_SUCCESS : SMP_OOB_FAIL; tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); BTM_TRACE_DEBUG ("BTM_BleOobDataReply"); if (p_dev_rec == NULL) { BTM_TRACE_ERROR("BTM_BleOobDataReply() to Unknown device"); return; } p_dev_rec->sec_flags |= BTM_SEC_LE_AUTHENTICATED; SMP_OobDataReply(bd_addr, res_smp, len, p_data); #endif } /******************************************************************************* ** ** Function BTM_BleSecureConnectionOobDataReply ** ** Description This function is called to provide the OOB data for ** SMP in response to BTM_LE_SC_OOB_REQ_EVT when secure connection ** ** Parameters: bd_addr - Address of the peer device ** p_c - pointer to Confirmation ** p_r - pointer to Randomizer ** *******************************************************************************/ void BTM_BleSecureConnectionOobDataReply(BD_ADDR bd_addr, UINT8 *p_c, UINT8 *p_r) { #if SMP_INCLUDED == TRUE tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); BTM_TRACE_DEBUG ("%s", __func__); if (p_dev_rec == NULL) { BTM_TRACE_ERROR("%s Unknown device", __func__); return; } p_dev_rec->sec_flags |= BTM_SEC_LE_AUTHENTICATED; tSMP_SC_OOB_DATA oob; memset(&oob, 0, sizeof(tSMP_SC_OOB_DATA)); oob.peer_oob_data.present = true; memcpy(&oob.peer_oob_data.commitment, p_c, BT_OCTET16_LEN); memcpy(&oob.peer_oob_data.randomizer, p_r, BT_OCTET16_LEN); oob.peer_oob_data.addr_rcvd_from.type = p_dev_rec->ble.ble_addr_type; memcpy(oob.peer_oob_data.addr_rcvd_from.bda, bd_addr, BD_ADDR_LEN); SMP_SecureConnectionOobDataReply((UINT8 *)&oob); #endif } /******************************************************************************* ** ** Function BTM_BleSecureConnectionCreateOobData ** ** Description This function is called to create the OOB data for ** SMP when secure connection ** *******************************************************************************/ void BTM_BleSecureConnectionCreateOobData(void) { #if SMP_INCLUDED == TRUE BTM_TRACE_DEBUG ("%s", __func__); SMP_CreateLocalSecureConnectionsOobData(); #endif } /****************************************************************************** ** ** Function BTM_BleSetConnScanParams ** ** Description Set scan parameter used in BLE connection request ** ** Parameters: scan_interval: scan interval ** scan_window: scan window ** ** Returns void ** *******************************************************************************/ void BTM_BleSetConnScanParams (UINT32 scan_interval, UINT32 scan_window) { #if SMP_INCLUDED == TRUE tBTM_BLE_CB *p_ble_cb = &btm_cb.ble_ctr_cb; BOOLEAN new_param = FALSE; if (BTM_BLE_ISVALID_PARAM(scan_interval, BTM_BLE_SCAN_INT_MIN, BTM_BLE_SCAN_INT_MAX) && BTM_BLE_ISVALID_PARAM(scan_window, BTM_BLE_SCAN_WIN_MIN, BTM_BLE_SCAN_WIN_MAX)) { if (p_ble_cb->scan_int != scan_interval) { p_ble_cb->scan_int = scan_interval; new_param = TRUE; } if (p_ble_cb->scan_win != scan_window) { p_ble_cb->scan_win = scan_window; new_param = TRUE; } if (new_param && p_ble_cb->conn_state == BLE_BG_CONN) { btm_ble_suspend_bg_conn(); } } else { BTM_TRACE_ERROR("Illegal Connection Scan Parameters"); } #endif } /******************************************************** ** ** Function BTM_BleSetPrefConnParams ** ** Description Set a peripheral's preferred connection parameters ** ** Parameters: bd_addr - BD address of the peripheral ** scan_interval: scan interval ** scan_window: scan window ** min_conn_int - minimum preferred connection interval ** max_conn_int - maximum preferred connection interval ** slave_latency - preferred slave latency ** supervision_tout - preferred supervision timeout ** ** Returns void ** *******************************************************************************/ void BTM_BleSetPrefConnParams (BD_ADDR bd_addr, UINT16 min_conn_int, UINT16 max_conn_int, UINT16 slave_latency, UINT16 supervision_tout) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_or_alloc_dev (bd_addr); BTM_TRACE_API ("BTM_BleSetPrefConnParams min: %u max: %u latency: %u \ tout: %u", min_conn_int, max_conn_int, slave_latency, supervision_tout); if (BTM_BLE_ISVALID_PARAM(min_conn_int, BTM_BLE_CONN_INT_MIN, BTM_BLE_CONN_INT_MAX) && BTM_BLE_ISVALID_PARAM(max_conn_int, BTM_BLE_CONN_INT_MIN, BTM_BLE_CONN_INT_MAX) && BTM_BLE_ISVALID_PARAM(supervision_tout, BTM_BLE_CONN_SUP_TOUT_MIN, BTM_BLE_CONN_SUP_TOUT_MAX) && (slave_latency <= BTM_BLE_CONN_LATENCY_MAX || slave_latency == BTM_BLE_CONN_PARAM_UNDEF)) { if (p_dev_rec) { /* expect conn int and stout and slave latency to be updated all together */ if (min_conn_int != BTM_BLE_CONN_PARAM_UNDEF || max_conn_int != BTM_BLE_CONN_PARAM_UNDEF) { if (min_conn_int != BTM_BLE_CONN_PARAM_UNDEF) { p_dev_rec->conn_params.min_conn_int = min_conn_int; } else { p_dev_rec->conn_params.min_conn_int = max_conn_int; } if (max_conn_int != BTM_BLE_CONN_PARAM_UNDEF) { p_dev_rec->conn_params.max_conn_int = max_conn_int; } else { p_dev_rec->conn_params.max_conn_int = min_conn_int; } if (slave_latency != BTM_BLE_CONN_PARAM_UNDEF) { p_dev_rec->conn_params.slave_latency = slave_latency; } else { p_dev_rec->conn_params.slave_latency = BTM_BLE_CONN_SLAVE_LATENCY_DEF; } if (supervision_tout != BTM_BLE_CONN_PARAM_UNDEF) { p_dev_rec->conn_params.supervision_tout = supervision_tout; } else { p_dev_rec->conn_params.supervision_tout = BTM_BLE_CONN_TIMEOUT_DEF; } } } else { BTM_TRACE_ERROR("Unknown Device, setting rejected"); } } else { BTM_TRACE_ERROR("Illegal Connection Parameters"); } } /******************************************************************************* ** ** Function BTM_ReadDevInfo ** ** Description This function is called to read the device/address type ** of BD address. ** ** Parameter remote_bda: remote device address ** p_dev_type: output parameter to read the device type. ** p_addr_type: output parameter to read the address type. ** *******************************************************************************/ void BTM_ReadDevInfo (BD_ADDR remote_bda, tBT_DEVICE_TYPE *p_dev_type, tBLE_ADDR_TYPE *p_addr_type) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (remote_bda); tBTM_INQ_INFO *p_inq_info = BTM_InqDbRead(remote_bda); tBLE_ADDR_TYPE temp_addr_type = (*p_addr_type); *p_addr_type = BLE_ADDR_PUBLIC; if (!p_dev_rec) { *p_dev_type = BT_DEVICE_TYPE_BREDR; /* Check with the BT manager if details about remote device are known */ if (p_inq_info != NULL) { *p_dev_type = p_inq_info->results.device_type ; *p_addr_type = p_inq_info->results.ble_addr_type; } else { if(temp_addr_type <= BLE_ADDR_TYPE_MAX) { *p_addr_type = temp_addr_type; } else { /* unknown device, assume BR/EDR */ BTM_TRACE_DEBUG ("btm_find_dev_type - unknown device, BR/EDR assumed"); } } } else { /* there is a security device record existing */ /* new inquiry result, overwrite device type in security device record */ if (p_inq_info) { p_dev_rec->device_type = p_inq_info->results.device_type; p_dev_rec->ble.ble_addr_type = p_inq_info->results.ble_addr_type; } if (memcmp(p_dev_rec->bd_addr, remote_bda, BD_ADDR_LEN) == 0 && memcmp(p_dev_rec->ble.pseudo_addr, remote_bda, BD_ADDR_LEN) == 0) { *p_dev_type = p_dev_rec->device_type; *p_addr_type = p_dev_rec->ble.ble_addr_type; } else if (memcmp(p_dev_rec->ble.pseudo_addr, remote_bda, BD_ADDR_LEN) == 0) { *p_dev_type = BT_DEVICE_TYPE_BLE; *p_addr_type = p_dev_rec->ble.ble_addr_type; } else { /* matching static address only */ *p_dev_type = BT_DEVICE_TYPE_BREDR; *p_addr_type = BLE_ADDR_PUBLIC; } } BTM_TRACE_DEBUG ("btm_find_dev_type - device_type = %d addr_type = %d", *p_dev_type , *p_addr_type); } #endif ///BLE_INCLUDED == TRUE /******************************************************************************* ** ** Function BTM_ReadConnectedTransportAddress ** ** Description This function is called to read the paired device/address type of other device paired ** corresponding to the BD_address ** ** Parameter remote_bda: remote device address, carry out the transport address ** transport: active transport ** ** Return TRUE if an active link is identified; FALSE otherwise ** *******************************************************************************/ BOOLEAN BTM_ReadConnectedTransportAddress(BD_ADDR remote_bda, tBT_TRANSPORT transport) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev(remote_bda); /* if no device can be located, return */ if (p_dev_rec == NULL) { memset(remote_bda, 0, BD_ADDR_LEN); return FALSE; } if (transport == BT_TRANSPORT_BR_EDR) { if (btm_bda_to_acl(p_dev_rec->bd_addr, transport) != NULL) { memcpy(remote_bda, p_dev_rec->bd_addr, BD_ADDR_LEN); return TRUE; } else if (p_dev_rec->device_type & BT_DEVICE_TYPE_BREDR) { memcpy(remote_bda, p_dev_rec->bd_addr, BD_ADDR_LEN); } else { memset(remote_bda, 0, BD_ADDR_LEN); } return FALSE; } #if (BLE_INCLUDED == TRUE) if (transport == BT_TRANSPORT_LE) { memcpy(remote_bda, p_dev_rec->ble.pseudo_addr, BD_ADDR_LEN); if (btm_bda_to_acl(p_dev_rec->ble.pseudo_addr, transport) != NULL) { return TRUE; } else { return FALSE; } } #endif ///BLE_INCLUDED == TRUE return FALSE; } #if (BLE_INCLUDED == TRUE) /******************************************************************************* ** ** Function BTM_BleReceiverTest ** ** Description This function is called to start the LE Receiver test ** ** Parameter rx_freq - Frequency Range ** p_cmd_cmpl_cback - Command Complete callback ** *******************************************************************************/ void BTM_BleReceiverTest(UINT8 rx_freq, tBTM_CMPL_CB *p_cmd_cmpl_cback) { btm_cb.devcb.p_le_test_cmd_cmpl_cb = p_cmd_cmpl_cback; if (btsnd_hcic_ble_receiver_test(rx_freq) == FALSE) { BTM_TRACE_ERROR("%s: Unable to Trigger LE receiver test", __FUNCTION__); } } /******************************************************************************* ** ** Function BTM_BleTransmitterTest ** ** Description This function is called to start the LE Transmitter test ** ** Parameter tx_freq - Frequency Range ** test_data_len - Length in bytes of payload data in each packet ** packet_payload - Pattern to use in the payload ** p_cmd_cmpl_cback - Command Complete callback ** *******************************************************************************/ void BTM_BleTransmitterTest(UINT8 tx_freq, UINT8 test_data_len, UINT8 packet_payload, tBTM_CMPL_CB *p_cmd_cmpl_cback) { btm_cb.devcb.p_le_test_cmd_cmpl_cb = p_cmd_cmpl_cback; if (btsnd_hcic_ble_transmitter_test(tx_freq, test_data_len, packet_payload) == FALSE) { BTM_TRACE_ERROR("%s: Unable to Trigger LE transmitter test", __FUNCTION__); } } /******************************************************************************* ** ** Function BTM_BleTestEnd ** ** Description This function is called to stop the in-progress TX or RX test ** ** Parameter p_cmd_cmpl_cback - Command complete callback ** *******************************************************************************/ void BTM_BleTestEnd(tBTM_CMPL_CB *p_cmd_cmpl_cback) { btm_cb.devcb.p_le_test_cmd_cmpl_cb = p_cmd_cmpl_cback; if (btsnd_hcic_ble_test_end() == FALSE) { BTM_TRACE_ERROR("%s: Unable to End the LE TX/RX test", __FUNCTION__); } } /******************************************************************************* ** Internal Functions *******************************************************************************/ void btm_ble_test_command_complete(UINT8 *p) { tBTM_CMPL_CB *p_cb = btm_cb.devcb.p_le_test_cmd_cmpl_cb; btm_cb.devcb.p_le_test_cmd_cmpl_cb = NULL; if (p_cb) { (*p_cb)(p); } } #if (BLE_50_FEATURE_SUPPORT == TRUE) /******************************************************************************* ** ** Function BTM_BleEnhancedReceiverTest ** ** Description This function is called to start the LE Enhanced Receiver test ** ** Parameter rx_freq - Frequency Range ** phy - The type of phy that receives data ** modulation_index - modulation index ** p_cmd_cmpl_cback - Command Complete callback ** *******************************************************************************/ void BTM_BleEnhancedReceiverTest(UINT8 rx_freq, UINT8 phy, UINT8 modulation_index, tBTM_CMPL_CB *p_cmd_cmpl_cback) { btm_cb.devcb.p_le_test_cmd_cmpl_cb = p_cmd_cmpl_cback; if (btsnd_hcic_ble_enhand_rx_test(rx_freq, phy, modulation_index) == FALSE) { BTM_TRACE_ERROR("%s: Unable to Trigger LE enhanced receiver test", __FUNCTION__); } } /******************************************************************************* ** ** Function BTM_BleEnhancedTransmitterTest ** ** Description This function is called to start the LE Enhanced Transmitter test ** ** Parameter tx_freq - Frequency Range ** test_data_len - Length in bytes of payload data in each packet ** packet_payload - Pattern to use in the payload ** phy - The type of phy that sends data ** p_cmd_cmpl_cback - Command Complete callback ** *******************************************************************************/ void BTM_BleEnhancedTransmitterTest(UINT8 tx_freq, UINT8 test_data_len, UINT8 packet_payload, UINT8 phy, tBTM_CMPL_CB *p_cmd_cmpl_cback) { btm_cb.devcb.p_le_test_cmd_cmpl_cb = p_cmd_cmpl_cback; if (btsnd_hcic_ble_enhand_tx_test(tx_freq, test_data_len, packet_payload, phy) == FALSE) { BTM_TRACE_ERROR("%s: Unable to Trigger LE enhanced transmitter test", __FUNCTION__); } } #endif // BLE_50_FEATURE_SUPPORT /******************************************************************************* ** ** Function BTM_UseLeLink ** ** Description This function is to select the underneath physical link to use. ** ** Returns TRUE to use LE, FALSE use BR/EDR. ** *******************************************************************************/ BOOLEAN BTM_UseLeLink (BD_ADDR bd_addr) { tACL_CONN *p; tBT_DEVICE_TYPE dev_type; tBLE_ADDR_TYPE addr_type = 0; BOOLEAN use_le = FALSE; if ((p = btm_bda_to_acl(bd_addr, BT_TRANSPORT_BR_EDR)) != NULL) { return use_le; } else if ((p = btm_bda_to_acl(bd_addr, BT_TRANSPORT_LE)) != NULL) { use_le = TRUE; } else { BTM_ReadDevInfo(bd_addr, &dev_type, &addr_type); use_le = (dev_type == BT_DEVICE_TYPE_BLE); } return use_le; } /******************************************************************************* ** ** Function BTM_SetBleDataLength ** ** Description This function is to set maximum BLE transmission packet size ** ** Returns BTM_SUCCESS if success; otherwise failed. ** *******************************************************************************/ tBTM_STATUS BTM_SetBleDataLength(BD_ADDR bd_addr, UINT16 tx_pdu_length) { tACL_CONN *p_acl = btm_bda_to_acl(bd_addr, BT_TRANSPORT_LE); BTM_TRACE_DEBUG("%s: tx_pdu_length =%d", __FUNCTION__, tx_pdu_length); if (!controller_get_interface()->supports_ble_packet_extension()) { BTM_TRACE_ERROR("%s failed, request not supported", __FUNCTION__); return BTM_CONTROL_LE_DATA_LEN_UNSUPPORTED; } if (p_acl != NULL) { if (!HCI_LE_DATA_LEN_EXT_SUPPORTED(p_acl->peer_le_features)) { BTM_TRACE_ERROR("%s failed, peer does not support request", __FUNCTION__); return BTM_PEER_LE_DATA_LEN_UNSUPPORTED; } if (tx_pdu_length > BTM_BLE_DATA_SIZE_MAX) { tx_pdu_length = BTM_BLE_DATA_SIZE_MAX; } else if (tx_pdu_length < BTM_BLE_DATA_SIZE_MIN) { tx_pdu_length = BTM_BLE_DATA_SIZE_MIN; } /* always set the TxTime to be max, as controller does not care for now */ btsnd_hcic_ble_set_data_length(p_acl->hci_handle, tx_pdu_length, BTM_BLE_DATA_TX_TIME_MAX); return BTM_SUCCESS; } else { BTM_TRACE_ERROR("%s: Wrong mode: no LE link exist or LE not supported", __FUNCTION__); return BTM_WRONG_MODE; } } #if (SMP_INCLUDED == TRUE) /******************************************************************************* ** ** Function btm_ble_determine_security_act ** ** Description This function checks the security of current LE link ** and returns the appropriate action that needs to be ** taken to achieve the required security. ** ** Parameter is_originator - True if outgoing connection ** bdaddr: remote device address ** security_required: Security required for the service. ** ** Returns The appropriate security action required. ** *******************************************************************************/ tBTM_SEC_ACTION btm_ble_determine_security_act(BOOLEAN is_originator, BD_ADDR bdaddr, UINT16 security_required) { tBTM_LE_AUTH_REQ auth_req = 0x00; if (is_originator) { if ((security_required & BTM_SEC_OUT_FLAGS) == 0 && (security_required & BTM_SEC_OUT_MITM) == 0) { BTM_TRACE_DEBUG ("%s No security required for outgoing connection", __func__); return BTM_SEC_OK; } if (security_required & BTM_SEC_OUT_MITM) { auth_req |= BTM_LE_AUTH_REQ_MITM; } } else { if ((security_required & BTM_SEC_IN_FLAGS) == 0&& (security_required & BTM_SEC_IN_MITM) == 0) { BTM_TRACE_DEBUG ("%s No security required for incoming connection", __func__); return BTM_SEC_OK; } if (security_required & BTM_SEC_IN_MITM) { auth_req |= BTM_LE_AUTH_REQ_MITM; } } tBTM_BLE_SEC_REQ_ACT ble_sec_act = BTM_BLE_SEC_REQ_ACT_NONE; btm_ble_link_sec_check(bdaddr, auth_req, &ble_sec_act); BTM_TRACE_DEBUG ("%s ble_sec_act %d", __func__ , ble_sec_act); if (ble_sec_act == BTM_BLE_SEC_REQ_ACT_DISCARD) { return BTM_SEC_ENC_PENDING; } if (ble_sec_act == BTM_BLE_SEC_REQ_ACT_NONE) { return BTM_SEC_OK; } UINT8 sec_flag = 0; BTM_GetSecurityFlagsByTransport(bdaddr, &sec_flag, BT_TRANSPORT_LE); BOOLEAN is_link_encrypted = FALSE; BOOLEAN is_key_mitm = FALSE; if (sec_flag & (BTM_SEC_FLAG_ENCRYPTED| BTM_SEC_FLAG_LKEY_KNOWN)) { if (sec_flag & BTM_SEC_FLAG_ENCRYPTED) { is_link_encrypted = TRUE; } if (sec_flag & BTM_SEC_FLAG_LKEY_AUTHED) { is_key_mitm = TRUE; } } if (auth_req & BTM_LE_AUTH_REQ_MITM) { if (!is_key_mitm) { return BTM_SEC_ENCRYPT_MITM; } else { if (is_link_encrypted) { return BTM_SEC_OK; } else { return BTM_SEC_ENCRYPT; } } } else { if (is_link_encrypted) { return BTM_SEC_OK; } else { return BTM_SEC_ENCRYPT_NO_MITM; } } return BTM_SEC_OK; } /******************************************************************************* ** ** Function btm_ble_start_sec_check ** ** Description This function is to check and set the security required for ** LE link for LE COC. ** ** Parameter bdaddr: remote device address. ** psm : PSM of the LE COC service. ** is_originator: TRUE if outgoing connection. ** p_callback : Pointer to the callback function. ** p_ref_data : Pointer to be returned along with the callback. ** ** Returns TRUE if link already meets the required security; otherwise FALSE. ** *******************************************************************************/ BOOLEAN btm_ble_start_sec_check(BD_ADDR bd_addr, UINT16 psm, BOOLEAN is_originator, tBTM_SEC_CALLBACK *p_callback, void *p_ref_data) { /* Find the service record for the PSM */ tBTM_SEC_SERV_REC *p_serv_rec = btm_sec_find_first_serv (is_originator, psm); /* If there is no application registered with this PSM do not allow connection */ if (!p_serv_rec) { BTM_TRACE_WARNING ("%s PSM: %d no application registered", __func__, psm); (*p_callback) (bd_addr, BT_TRANSPORT_LE, p_ref_data, BTM_MODE_UNSUPPORTED); return FALSE; } tBTM_SEC_ACTION sec_act = btm_ble_determine_security_act(is_originator, bd_addr, p_serv_rec->security_flags); tBTM_BLE_SEC_ACT ble_sec_act = BTM_BLE_SEC_NONE; BOOLEAN status = FALSE; switch (sec_act) { case BTM_SEC_OK: BTM_TRACE_DEBUG ("%s Security met", __func__); p_callback(bd_addr, BT_TRANSPORT_LE, p_ref_data, BTM_SUCCESS); status = TRUE; break; case BTM_SEC_ENCRYPT: BTM_TRACE_DEBUG ("%s Encryption needs to be done", __func__); ble_sec_act = BTM_BLE_SEC_ENCRYPT; break; case BTM_SEC_ENCRYPT_MITM: BTM_TRACE_DEBUG ("%s Pairing with MITM needs to be done", __func__); ble_sec_act = BTM_BLE_SEC_ENCRYPT_MITM; break; case BTM_SEC_ENCRYPT_NO_MITM: BTM_TRACE_DEBUG ("%s Pairing with No MITM needs to be done", __func__); ble_sec_act = BTM_BLE_SEC_ENCRYPT_NO_MITM; break; case BTM_SEC_ENC_PENDING: BTM_TRACE_DEBUG ("%s Ecryption pending", __func__); break; } if (ble_sec_act == BTM_BLE_SEC_NONE) { return status; } tL2C_LCB *p_lcb = l2cu_find_lcb_by_bd_addr(bd_addr, BT_TRANSPORT_LE); p_lcb->sec_act = sec_act; BTM_SetEncryption(bd_addr, BT_TRANSPORT_LE, p_callback, p_ref_data); return FALSE; } /******************************************************************************* ** ** Function btm_ble_rand_enc_complete ** ** Description This function is the callback functions for HCI_Rand command ** and HCI_Encrypt command is completed. ** This message is received from the HCI. ** ** Returns void ** *******************************************************************************/ void btm_ble_rand_enc_complete (UINT8 *p, UINT16 op_code, tBTM_RAND_ENC_CB *p_enc_cplt_cback) { tBTM_RAND_ENC params; UINT8 *p_dest = params.param_buf; BTM_TRACE_DEBUG ("btm_ble_rand_enc_complete"); memset(¶ms, 0, sizeof(tBTM_RAND_ENC)); /* If there was a callback address for vcs complete, call it */ if (p_enc_cplt_cback && p) { /* Pass parameters to the callback function */ STREAM_TO_UINT8(params.status, p); /* command status */ if (params.status == HCI_SUCCESS) { params.opcode = op_code; if (op_code == HCI_BLE_RAND) { params.param_len = BT_OCTET8_LEN; } else { params.param_len = BT_OCTET16_LEN; } memcpy(p_dest, p, params.param_len); /* Fetch return info from HCI event message */ } if (p_enc_cplt_cback) { (*p_enc_cplt_cback)(¶ms); /* Call the Encryption complete callback function */ } } } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function btm_ble_get_enc_key_type ** ** Description This function is to increment local sign counter ** Returns None ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) void btm_ble_increment_sign_ctr(BD_ADDR bd_addr, BOOLEAN is_local ) { tBTM_SEC_DEV_REC *p_dev_rec; BTM_TRACE_DEBUG ("btm_ble_increment_sign_ctr is_local=%d", is_local); if ((p_dev_rec = btm_find_dev (bd_addr)) != NULL) { if (is_local) { p_dev_rec->ble.keys.local_counter++; } else { p_dev_rec->ble.keys.counter++; } BTM_TRACE_DEBUG ("is_local=%d local sign counter=%d peer sign counter=%d", is_local, p_dev_rec->ble.keys.local_counter, p_dev_rec->ble.keys.counter); } } #endif ///SMP_INCLUDED == TRUE #endif ///BLE_INCLUDED == TRUE /******************************************************************************* ** ** Function btm_ble_get_enc_key_type ** ** Description This function is to get the BLE key type that has been exchanged ** in between local device and peer device. ** ** Returns p_key_type: output parameter to carry the key type value. ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) #if (BLE_INCLUDED == TRUE) BOOLEAN btm_ble_get_enc_key_type(BD_ADDR bd_addr, UINT8 *p_key_types) { tBTM_SEC_DEV_REC *p_dev_rec; BTM_TRACE_DEBUG ("btm_ble_get_enc_key_type"); if ((p_dev_rec = btm_find_dev (bd_addr)) != NULL) { *p_key_types = p_dev_rec->ble.key_type; return TRUE; } return FALSE; } /******************************************************************************* ** ** Function btm_get_local_div ** ** Description This function is called to read the local DIV ** ** Returns TRUE - if a valid DIV is available *******************************************************************************/ BOOLEAN btm_get_local_div (BD_ADDR bd_addr, UINT16 *p_div) { tBTM_SEC_DEV_REC *p_dev_rec; BOOLEAN status = FALSE; BTM_TRACE_DEBUG ("btm_get_local_div"); BTM_TRACE_DEBUG("bd_addr:%02x-%02x-%02x-%02x-%02x-%02x", bd_addr[0], bd_addr[1], bd_addr[2], bd_addr[3], bd_addr[4], bd_addr[5]); *p_div = 0; p_dev_rec = btm_find_dev (bd_addr); if (p_dev_rec && p_dev_rec->ble.keys.div) { status = TRUE; *p_div = p_dev_rec->ble.keys.div; } BTM_TRACE_DEBUG ("btm_get_local_div status=%d (1-OK) DIV=0x%x", status, *p_div); return status; } /******************************************************************************* ** ** Function btm_sec_save_le_key ** ** Description This function is called by the SMP to update ** an BLE key. SMP is internal, whereas all the keys shall ** be sent to the application. The function is also called ** when application passes ble key stored in NVRAM to the btm_sec. ** pass_to_application parameter is false in this case. ** ** Returns void ** *******************************************************************************/ void btm_sec_save_le_key(BD_ADDR bd_addr, tBTM_LE_KEY_TYPE key_type, tBTM_LE_KEY_VALUE *p_keys, BOOLEAN pass_to_application) { tBTM_SEC_DEV_REC *p_rec; tBTM_LE_EVT_DATA cb_data; UINT8 i; BTM_TRACE_DEBUG ("btm_sec_save_le_key key_type=0x%x pass_to_application=%d", key_type, pass_to_application); /* Store the updated key in the device database */ BTM_TRACE_DEBUG("bd_addr:%02x-%02x-%02x-%02x-%02x-%02x", bd_addr[0], bd_addr[1], bd_addr[2], bd_addr[3], bd_addr[4], bd_addr[5]); if ((p_rec = btm_find_dev (bd_addr)) != NULL && (p_keys || key_type == BTM_LE_KEY_LID)) { btm_ble_init_pseudo_addr (p_rec, bd_addr); switch (key_type) { case BTM_LE_KEY_PENC: memcpy(p_rec->ble.keys.pltk, p_keys->penc_key.ltk, BT_OCTET16_LEN); memcpy(p_rec->ble.keys.rand, p_keys->penc_key.rand, BT_OCTET8_LEN); p_rec->ble.keys.sec_level = p_keys->penc_key.sec_level; p_rec->ble.keys.ediv = p_keys->penc_key.ediv; p_rec->ble.keys.key_size = p_keys->penc_key.key_size; p_rec->ble.key_type |= BTM_LE_KEY_PENC; p_rec->sec_flags |= BTM_SEC_LE_LINK_KEY_KNOWN; if (p_keys->penc_key.sec_level == SMP_SEC_AUTHENTICATED) { p_rec->sec_flags |= BTM_SEC_LE_LINK_KEY_AUTHED; } else { p_rec->sec_flags &= ~BTM_SEC_LE_LINK_KEY_AUTHED; } BTM_TRACE_DEBUG("BTM_LE_KEY_PENC key_type=0x%x sec_flags=0x%x sec_leve=0x%x", p_rec->ble.key_type, p_rec->sec_flags, p_rec->ble.keys.sec_level); break; case BTM_LE_KEY_PID: for (i = 0; i < BT_OCTET16_LEN; i++) { p_rec->ble.keys.irk[i] = p_keys->pid_key.irk[i]; } //memcpy( p_rec->ble.keys.irk, p_keys->pid_key, BT_OCTET16_LEN); todo will crash the system memcpy(p_rec->ble.static_addr, p_keys->pid_key.static_addr, BD_ADDR_LEN); p_rec->ble.static_addr_type = p_keys->pid_key.addr_type; p_rec->ble.key_type |= BTM_LE_KEY_PID; BTM_TRACE_DEBUG("BTM_LE_KEY_PID key_type=0x%x save peer IRK", p_rec->ble.key_type); /* update device record address as static address */ memcpy(p_rec->bd_addr, p_keys->pid_key.static_addr, BD_ADDR_LEN); /* combine DUMO device security record if needed */ btm_consolidate_dev(p_rec); break; case BTM_LE_KEY_PCSRK: memcpy(p_rec->ble.keys.pcsrk, p_keys->pcsrk_key.csrk, BT_OCTET16_LEN); p_rec->ble.keys.srk_sec_level = p_keys->pcsrk_key.sec_level; p_rec->ble.keys.counter = p_keys->pcsrk_key.counter; p_rec->ble.key_type |= BTM_LE_KEY_PCSRK; p_rec->sec_flags |= BTM_SEC_LE_LINK_KEY_KNOWN; if ( p_keys->pcsrk_key.sec_level == SMP_SEC_AUTHENTICATED) { p_rec->sec_flags |= BTM_SEC_LE_LINK_KEY_AUTHED; } else { p_rec->sec_flags &= ~BTM_SEC_LE_LINK_KEY_AUTHED; } BTM_TRACE_DEBUG("BTM_LE_KEY_PCSRK key_type=0x%x sec_flags=0x%x sec_level=0x%x peer_counter=%d", p_rec->ble.key_type, p_rec->sec_flags, p_rec->ble.keys.srk_sec_level, p_rec->ble.keys.counter ); break; case BTM_LE_KEY_LENC: memcpy(p_rec->ble.keys.lltk, p_keys->lenc_key.ltk, BT_OCTET16_LEN); p_rec->ble.keys.div = p_keys->lenc_key.div; /* update DIV */ p_rec->ble.keys.sec_level = p_keys->lenc_key.sec_level; p_rec->ble.keys.key_size = p_keys->lenc_key.key_size; p_rec->ble.key_type |= BTM_LE_KEY_LENC; /* Set that link key is known since this shares field with BTM_SEC_FLAG_LKEY_KNOWN flag in stack/btm_api.h*/ p_rec->sec_flags |= BTM_SEC_LE_LINK_KEY_KNOWN; if ( p_keys->lenc_key.sec_level == SMP_SEC_AUTHENTICATED) { p_rec->sec_flags |= BTM_SEC_LE_LINK_KEY_AUTHED; } else { p_rec->sec_flags &= ~BTM_SEC_LE_LINK_KEY_AUTHED; } BTM_TRACE_DEBUG("BTM_LE_KEY_LENC key_type=0x%x DIV=0x%x key_size=0x%x sec_level=0x%x", p_rec->ble.key_type, p_rec->ble.keys.div, p_rec->ble.keys.key_size, p_rec->ble.keys.sec_level ); break; case BTM_LE_KEY_LCSRK:/* local CSRK has been delivered */ memcpy (p_rec->ble.keys.lcsrk, p_keys->lcsrk_key.csrk, BT_OCTET16_LEN); p_rec->ble.keys.div = p_keys->lcsrk_key.div; /* update DIV */ p_rec->ble.keys.local_csrk_sec_level = p_keys->lcsrk_key.sec_level; p_rec->ble.keys.local_counter = p_keys->lcsrk_key.counter; p_rec->ble.key_type |= BTM_LE_KEY_LCSRK; BTM_TRACE_DEBUG("BTM_LE_KEY_LCSRK key_type=0x%x DIV=0x%x scrk_sec_level=0x%x local_counter=%d", p_rec->ble.key_type, p_rec->ble.keys.div, p_rec->ble.keys.local_csrk_sec_level, p_rec->ble.keys.local_counter ); break; case BTM_LE_KEY_LID: p_rec->ble.key_type |= BTM_LE_KEY_LID; break; default: BTM_TRACE_WARNING("btm_sec_save_le_key (Bad key_type 0x%02x)", key_type); return; } BTM_TRACE_DEBUG ("BLE key type 0x%02x updated for BDA: %08x%04x (btm_sec_save_le_key)", key_type, (bd_addr[0] << 24) + (bd_addr[1] << 16) + (bd_addr[2] << 8) + bd_addr[3], (bd_addr[4] << 8) + bd_addr[5]); /* Notify the application that one of the BLE keys has been updated If link key is in progress, it will get sent later.*/ if (pass_to_application && btm_cb.api.p_le_callback) { cb_data.key.p_key_value = p_keys; cb_data.key.key_type = key_type; (*btm_cb.api.p_le_callback) (BTM_LE_KEY_EVT, bd_addr, &cb_data); } return; } BTM_TRACE_WARNING ("BLE key type 0x%02x called for Unknown BDA or type: %08x%04x !! (btm_sec_save_le_key)", key_type, (bd_addr[0] << 24) + (bd_addr[1] << 16) + (bd_addr[2] << 8) + bd_addr[3], (bd_addr[4] << 8) + bd_addr[5]); if (p_rec) { BTM_TRACE_DEBUG ("sec_flags=0x%x", p_rec->sec_flags); } } /******************************************************************************* ** ** Function btm_ble_update_sec_key_size ** ** Description update the current lin kencryption key size ** ** Returns void ** *******************************************************************************/ void btm_ble_update_sec_key_size(BD_ADDR bd_addr, UINT8 enc_key_size) { tBTM_SEC_DEV_REC *p_rec; BTM_TRACE_DEBUG("btm_ble_update_sec_key_size enc_key_size = %d", enc_key_size); if ((p_rec = btm_find_dev (bd_addr)) != NULL ) { p_rec->enc_key_size = enc_key_size; } } /******************************************************************************* ** ** Function btm_ble_read_sec_key_size ** ** Description update the current lin kencryption key size ** ** Returns void ** *******************************************************************************/ UINT8 btm_ble_read_sec_key_size(BD_ADDR bd_addr) { tBTM_SEC_DEV_REC *p_rec; if ((p_rec = btm_find_dev (bd_addr)) != NULL ) { return p_rec->enc_key_size; } else { return 0; } return 0; } /******************************************************************************* ** ** Function btm_ble_link_sec_check ** ** Description Check BLE link security level match. ** ** Returns TRUE: check is OK and the *p_sec_req_act contain the action ** *******************************************************************************/ void btm_ble_link_sec_check(BD_ADDR bd_addr, tBTM_LE_AUTH_REQ auth_req, tBTM_BLE_SEC_REQ_ACT *p_sec_req_act) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); UINT8 req_sec_level = BTM_LE_SEC_NONE, cur_sec_level = BTM_LE_SEC_NONE; BTM_TRACE_DEBUG ("btm_ble_link_sec_check auth_req =0x%x", auth_req); if (p_dev_rec == NULL) { BTM_TRACE_ERROR ("btm_ble_link_sec_check received for unknown device"); return; } if (p_dev_rec->sec_state == BTM_SEC_STATE_ENCRYPTING || p_dev_rec->sec_state == BTM_SEC_STATE_AUTHENTICATING) { /* race condition: discard the security request while master is encrypting the link */ *p_sec_req_act = BTM_BLE_SEC_REQ_ACT_DISCARD; } else { req_sec_level = BTM_LE_SEC_UNAUTHENTICATE; if (auth_req & BTM_LE_AUTH_REQ_MITM) { req_sec_level = BTM_LE_SEC_AUTHENTICATED; } BTM_TRACE_DEBUG ("dev_rec sec_flags=0x%x", p_dev_rec->sec_flags); /* currently encrypted */ if (p_dev_rec->sec_flags & BTM_SEC_LE_ENCRYPTED) { if (p_dev_rec->sec_flags & BTM_SEC_LE_AUTHENTICATED) { cur_sec_level = BTM_LE_SEC_AUTHENTICATED; } else { cur_sec_level = BTM_LE_SEC_UNAUTHENTICATE; } } else { /* unencrypted link */ /* if bonded, get the key security level */ if (p_dev_rec->ble.key_type & BTM_LE_KEY_PENC) { cur_sec_level = p_dev_rec->ble.keys.sec_level; } else { cur_sec_level = BTM_LE_SEC_NONE; } } if (cur_sec_level >= req_sec_level) { /* To avoid re-encryption on an encrypted link for an equal condition encryption */ *p_sec_req_act = BTM_BLE_SEC_REQ_ACT_ENCRYPT; } else { *p_sec_req_act = BTM_BLE_SEC_REQ_ACT_PAIR; /* start the pariring process to upgrade the keys*/ } } BTM_TRACE_DEBUG("cur_sec_level=%d req_sec_level=%d sec_req_act=%d", cur_sec_level, req_sec_level, *p_sec_req_act); } #endif ///BLE_INCLUDED == TRUE #endif ///SMP_INCLUDED == TRUE #if (BLE_INCLUDED == TRUE) /******************************************************************************* ** ** Function btm_ble_set_encryption ** ** Description This function is called to ensure that LE connection is ** encrypted. Should be called only on an open connection. ** Typically only needed for connections that first want to ** bring up unencrypted links, then later encrypt them. ** ** Returns void ** the local device ER is copied into er ** *******************************************************************************/ tBTM_STATUS btm_ble_set_encryption (BD_ADDR bd_addr, void *p_ref_data, UINT8 link_role) { tBTM_STATUS cmd = BTM_NO_RESOURCES; #if (SMP_INCLUDED == TRUE) tBTM_BLE_SEC_ACT sec_act = *(tBTM_BLE_SEC_ACT *)p_ref_data ; tBTM_SEC_DEV_REC *p_rec = btm_find_dev (bd_addr); tBTM_BLE_SEC_REQ_ACT sec_req_act; tBTM_LE_AUTH_REQ auth_req; if (p_rec == NULL) { BTM_TRACE_WARNING ("btm_ble_set_encryption (NULL device record!! sec_act=0x%x", sec_act); return (BTM_WRONG_MODE); } BTM_TRACE_DEBUG ("btm_ble_set_encryption sec_act=0x%x role_master=%d", sec_act, p_rec->role_master); if (sec_act == BTM_BLE_SEC_ENCRYPT_MITM) { p_rec->security_required |= BTM_SEC_IN_MITM; } switch (sec_act) { case BTM_BLE_SEC_ENCRYPT: if (link_role == BTM_ROLE_MASTER && (p_rec->ble.key_type & BTM_LE_KEY_PENC)) { /* start link layer encryption using the security info stored */ cmd = btm_ble_start_encrypt(bd_addr, FALSE, NULL); break; } /* if salve role then fall through to call SMP_Pair below which will send a sec_request to request the master to encrypt the link */ case BTM_BLE_SEC_ENCRYPT_NO_MITM: case BTM_BLE_SEC_ENCRYPT_MITM: if ((link_role == BTM_ROLE_MASTER) && (sec_act != BTM_BLE_SEC_ENCRYPT)) { auth_req = (sec_act == BTM_BLE_SEC_ENCRYPT_NO_MITM) ? SMP_AUTH_GEN_BOND : (SMP_AUTH_GEN_BOND | SMP_AUTH_YN_BIT); btm_ble_link_sec_check (bd_addr, auth_req, &sec_req_act); if (sec_req_act == BTM_BLE_SEC_REQ_ACT_ENCRYPT) { cmd = btm_ble_start_encrypt(bd_addr, FALSE, NULL); break; } } #if (SMP_SLAVE_CON_PARAMS_UPD_ENABLE == TRUE) // already have encrypted information, do not need to update connection parameters if(link_role == BTM_ROLE_SLAVE && (p_rec->ble.key_type & BTM_LE_KEY_PENC)) { p_rec->ble.skip_update_conn_param = true; } else { p_rec->ble.skip_update_conn_param = false; } #endif if (SMP_Pair(bd_addr) == SMP_STARTED) { cmd = BTM_CMD_STARTED; p_rec->sec_state = BTM_SEC_STATE_AUTHENTICATING; } break; default: cmd = BTM_WRONG_MODE; break; } #endif ///SMP_INCLUDED == TRUE return cmd; } /******************************************************************************* ** ** Function btm_ble_ltk_request ** ** Description This function is called when encryption request is received ** on a slave device. ** ** ** Returns void ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) void btm_ble_ltk_request(UINT16 handle, UINT8 rand[8], UINT16 ediv) { tBTM_CB *p_cb = &btm_cb; tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev_by_handle (handle); BT_OCTET16 dummy_stk = {0}; BTM_TRACE_DEBUG ("btm_ble_ltk_request"); p_cb->ediv = ediv; memcpy(p_cb->enc_rand, rand, BT_OCTET8_LEN); if (p_dev_rec != NULL) { if (!smp_proc_ltk_request(p_dev_rec->bd_addr)) { btm_ble_ltk_request_reply(p_dev_rec->bd_addr, FALSE, dummy_stk); } } } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function btm_ble_start_encrypt ** ** Description This function is called to start LE encryption. ** ** ** Returns BTM_SUCCESS if encryption was started successfully ** *******************************************************************************/ tBTM_STATUS btm_ble_start_encrypt(BD_ADDR bda, BOOLEAN use_stk, BT_OCTET16 stk) { #if (SMP_INCLUDED == TRUE) tBTM_CB *p_cb = &btm_cb; tBTM_SEC_DEV_REC *p_rec = btm_find_dev (bda); BT_OCTET8 dummy_rand = {0}; #endif ///SMP_INCLUDED == TRUE tBTM_STATUS rt = BTM_NO_RESOURCES; #if (SMP_INCLUDED == TRUE) BTM_TRACE_DEBUG ("btm_ble_start_encrypt"); if (!p_rec ) { BTM_TRACE_ERROR("Link is not active, can not encrypt!"); return BTM_WRONG_MODE; } if (p_rec->sec_state == BTM_SEC_STATE_ENCRYPTING) { BTM_TRACE_WARNING("Link Encryption is active, Busy!"); return BTM_BUSY; } p_cb->enc_handle = p_rec->ble_hci_handle; if (use_stk) { if (btsnd_hcic_ble_start_enc(p_rec->ble_hci_handle, dummy_rand, 0, stk)) { rt = BTM_CMD_STARTED; } } else if (p_rec->ble.key_type & BTM_LE_KEY_PENC) { if (btsnd_hcic_ble_start_enc(p_rec->ble_hci_handle, p_rec->ble.keys.rand, p_rec->ble.keys.ediv, p_rec->ble.keys.pltk)) { rt = BTM_CMD_STARTED; } } else { BTM_TRACE_ERROR("No key available to encrypt the link"); } if (rt == BTM_CMD_STARTED) { if (p_rec->sec_state == BTM_SEC_STATE_IDLE) { p_rec->sec_state = BTM_SEC_STATE_ENCRYPTING; } } #endif ///SMP_INCLUDED == TRUE return rt; } /******************************************************************************* ** ** Function btm_ble_link_encrypted ** ** Description This function is called when LE link encryption status is changed. ** ** Returns void ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) void btm_ble_link_encrypted(BD_ADDR bd_addr, UINT8 encr_enable) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); BOOLEAN enc_cback; if (!p_dev_rec) { BTM_TRACE_WARNING ("btm_ble_link_encrypted (No Device Found!) encr_enable=%d", encr_enable); return; } BTM_TRACE_DEBUG ("btm_ble_link_encrypted encr_enable=%d", encr_enable); enc_cback = (p_dev_rec->sec_state == BTM_SEC_STATE_ENCRYPTING); smp_link_encrypted(bd_addr, encr_enable); BTM_TRACE_DEBUG(" p_dev_rec->sec_flags=0x%x", p_dev_rec->sec_flags); if (encr_enable && p_dev_rec->enc_key_size == 0) { p_dev_rec->enc_key_size = p_dev_rec->ble.keys.key_size; } p_dev_rec->sec_state = BTM_SEC_STATE_IDLE; if (p_dev_rec->p_callback && enc_cback) { if (encr_enable) { btm_sec_dev_rec_cback_event(p_dev_rec, BTM_SUCCESS, TRUE); } else if (p_dev_rec->role_master) { btm_sec_dev_rec_cback_event(p_dev_rec, BTM_ERR_PROCESSING, TRUE); } } /* to notify GATT to send data if any request is pending */ gatt_notify_enc_cmpl(p_dev_rec->ble.pseudo_addr); } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function btm_ble_ltk_request_reply ** ** Description This function is called to send a LTK request reply on a slave ** device. ** ** Returns void ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) void btm_ble_ltk_request_reply(BD_ADDR bda, BOOLEAN use_stk, BT_OCTET16 stk) { tBTM_SEC_DEV_REC *p_rec = btm_find_dev (bda); tBTM_CB *p_cb = &btm_cb; if (p_rec == NULL) { BTM_TRACE_ERROR("btm_ble_ltk_request_reply received for unknown device"); return; } BTM_TRACE_DEBUG ("btm_ble_ltk_request_reply"); p_cb->enc_handle = p_rec->ble_hci_handle; p_cb->key_size = p_rec->ble.keys.key_size; BTM_TRACE_DEBUG("key size = %d", p_rec->ble.keys.key_size); if (use_stk) { btsnd_hcic_ble_ltk_req_reply(btm_cb.enc_handle, stk); } else { /* calculate LTK using peer device */ if (p_rec->ble.key_type & BTM_LE_KEY_LENC) { btsnd_hcic_ble_ltk_req_reply(btm_cb.enc_handle, p_rec->ble.keys.lltk); } else { btsnd_hcic_ble_ltk_req_neg_reply(btm_cb.enc_handle); } } } /******************************************************************************* ** ** Function btm_ble_io_capabilities_req ** ** Description This function is called to handle SMP get IO capability request. ** ** Returns void ** *******************************************************************************/ UINT8 btm_ble_io_capabilities_req(tBTM_SEC_DEV_REC *p_dev_rec, tBTM_LE_IO_REQ *p_data) { UINT8 callback_rc = BTM_SUCCESS; BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req"); if (btm_cb.api.p_le_callback) { /* the callback function implementation may change the IO capability... */ callback_rc = (*btm_cb.api.p_le_callback) (BTM_LE_IO_REQ_EVT, p_dev_rec->bd_addr, (tBTM_LE_EVT_DATA *)p_data); } #if BTM_OOB_INCLUDED == TRUE if ((callback_rc == BTM_SUCCESS) || (BTM_OOB_UNKNOWN != p_data->oob_data)) #else if (callback_rc == BTM_SUCCESS) #endif { #if BTM_BLE_CONFORMANCE_TESTING == TRUE if (btm_cb.devcb.keep_rfu_in_auth_req) { BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req keep_rfu_in_auth_req = %u", btm_cb.devcb.keep_rfu_in_auth_req); p_data->auth_req &= BTM_LE_AUTH_REQ_MASK_KEEP_RFU; btm_cb.devcb.keep_rfu_in_auth_req = FALSE; } else { /* default */ p_data->auth_req &= BTM_LE_AUTH_REQ_MASK; } #else p_data->auth_req &= BTM_LE_AUTH_REQ_MASK; #endif BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req 1: p_dev_rec->security_required = %d auth_req:%d", p_dev_rec->security_required, p_data->auth_req); BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req 2: i_keys=0x%x r_keys=0x%x (bit 0-LTK 1-IRK 2-CSRK)", p_data->init_keys, p_data->resp_keys); /* if authentication requires MITM protection, put on the mask */ if (p_dev_rec->security_required & BTM_SEC_IN_MITM) { p_data->auth_req |= BTM_LE_AUTH_REQ_MITM; } if (!(p_data->auth_req & SMP_AUTH_BOND)) { BTM_TRACE_DEBUG("Non bonding: No keys should be exchanged"); p_data->init_keys = 0; p_data->resp_keys = 0; } BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req 3: auth_req:%d\n", p_data->auth_req); BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req 4: i_keys=0x%x r_keys=0x%x\n", p_data->init_keys, p_data->resp_keys); BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req 5: p_data->io_cap = %d auth_req:%d\n", p_data->io_cap, p_data->auth_req); /* remove MITM protection requirement if IO cap does not allow it */ if ((p_data->io_cap == BTM_IO_CAP_NONE) && p_data->oob_data == SMP_OOB_NONE) { p_data->auth_req &= ~BTM_LE_AUTH_REQ_MITM; } if (!(p_data->auth_req & SMP_SC_SUPPORT_BIT)) { /* if Secure Connections are not supported then remove LK derivation, ** and keypress notifications. */ BTM_TRACE_DEBUG("%s-SC not supported -> No LK derivation, no keypress notifications", __func__); p_data->auth_req &= ~SMP_KP_SUPPORT_BIT; p_data->init_keys &= ~SMP_SEC_KEY_TYPE_LK; p_data->resp_keys &= ~SMP_SEC_KEY_TYPE_LK; } BTM_TRACE_DEBUG ("btm_ble_io_capabilities_req 6: IO_CAP:%d oob_data:%d auth_req:0x%02x\n", p_data->io_cap, p_data->oob_data, p_data->auth_req); } return callback_rc; } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function btm_ble_br_keys_req ** ** Description This function is called to handle SMP request for keys sent ** over BR/EDR. ** ** Returns void ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) UINT8 btm_ble_br_keys_req(tBTM_SEC_DEV_REC *p_dev_rec, tBTM_LE_IO_REQ *p_data) { UINT8 callback_rc = BTM_SUCCESS; BTM_TRACE_DEBUG ("%s\n", __func__); if (btm_cb.api.p_le_callback) { /* the callback function implementation may change the IO capability... */ callback_rc = (*btm_cb.api.p_le_callback) (BTM_LE_IO_REQ_EVT, p_dev_rec->bd_addr, (tBTM_LE_EVT_DATA *)p_data); } return callback_rc; } #endif ///SMP_INCLUDED #if (BLE_PRIVACY_SPT == TRUE ) /******************************************************************************* ** ** Function btm_ble_resolve_random_addr_on_conn_cmpl ** ** Description resolve random address complete on connection complete event. ** ** Returns void ** *******************************************************************************/ static void btm_ble_resolve_random_addr_on_conn_cmpl(void *p_rec, void *p_data) { UINT8 *p = (UINT8 *)p_data; tBTM_SEC_DEV_REC *match_rec = (tBTM_SEC_DEV_REC *) p_rec; UINT8 role, bda_type; UINT16 handle; BD_ADDR bda, local_rpa, peer_rpa; UINT16 conn_interval, conn_latency, conn_timeout; BOOLEAN match = FALSE; ++p; STREAM_TO_UINT16 (handle, p); STREAM_TO_UINT8 (role, p); STREAM_TO_UINT8 (bda_type, p); STREAM_TO_BDADDR (bda, p); // if the enhanced is true, means the connection is enhanced connect, // so the packet should include the local Resolvable Private Address and Peer Resolvable Private Address if(temp_enhanced) { STREAM_TO_BDADDR(local_rpa, p); STREAM_TO_BDADDR(peer_rpa, p); } STREAM_TO_UINT16 (conn_interval, p); STREAM_TO_UINT16 (conn_latency, p); STREAM_TO_UINT16 (conn_timeout, p); handle = HCID_GET_HANDLE (handle); BTM_TRACE_EVENT ("%s\n", __func__); if (match_rec) { BTM_TRACE_DEBUG("%s matched and resolved random address", __func__); match = TRUE; match_rec->ble.active_addr_type = BTM_BLE_ADDR_RRA; memcpy(match_rec->ble.cur_rand_addr, bda, BD_ADDR_LEN); if (!btm_ble_init_pseudo_addr (match_rec, bda)) { /* assign the original address to be the current report address */ memcpy(bda, match_rec->ble.pseudo_addr, BD_ADDR_LEN); } else { memcpy(bda, match_rec->bd_addr, BD_ADDR_LEN); } } else { BTM_TRACE_DEBUG("%s unable to match and resolve random address", __func__); } btm_ble_connected(bda, handle, HCI_ENCRYPT_MODE_DISABLED, role, bda_type, match); l2cble_conn_comp (handle, role, bda, bda_type, conn_interval, conn_latency, conn_timeout); return; } #endif /******************************************************************************* ** ** Function btm_ble_connected ** ** Description This function is when a LE connection to the peer device is ** established ** ** Returns void ** *******************************************************************************/ void btm_ble_connected (UINT8 *bda, UINT16 handle, UINT8 enc_mode, UINT8 role, tBLE_ADDR_TYPE addr_type, BOOLEAN addr_matched) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bda); tBTM_BLE_CB *p_cb = &btm_cb.ble_ctr_cb; UNUSED(addr_matched); BTM_TRACE_EVENT ("btm_ble_connected"); /* Commenting out trace due to obf/compilation problems. */ #if (BT_USE_TRACES == TRUE) if (p_dev_rec) { BTM_TRACE_EVENT ("Security Manager: btm_ble_connected : handle:%d enc_mode:%d bda:%x RName:%s", handle, enc_mode, (bda[2] << 24) + (bda[3] << 16) + (bda[4] << 8) + bda[5], p_dev_rec->sec_bd_name); BTM_TRACE_DEBUG ("btm_ble_connected sec_flags=0x%x", p_dev_rec->sec_flags); } else { BTM_TRACE_EVENT ("Security Manager: btm_ble_connected: handle:%d enc_mode:%d bda:%x ", handle, enc_mode, (bda[2] << 24) + (bda[3] << 16) + (bda[4] << 8) + bda[5]); } #endif if (!p_dev_rec) { /* There is no device record for new connection. Allocate one */ if ((p_dev_rec = btm_sec_alloc_dev (bda)) == NULL) { return; } } else { /* Update the timestamp for this device */ p_dev_rec->timestamp = btm_cb.dev_rec_count++; } /* update device information */ p_dev_rec->device_type |= BT_DEVICE_TYPE_BLE; p_dev_rec->ble_hci_handle = handle; p_dev_rec->ble.ble_addr_type = addr_type; /* update pseudo address */ memcpy(p_dev_rec->ble.pseudo_addr, bda, BD_ADDR_LEN); p_dev_rec->role_master = FALSE; if (role == HCI_ROLE_MASTER) { p_dev_rec->role_master = TRUE; } #if (defined BLE_PRIVACY_SPT && BLE_PRIVACY_SPT == TRUE) if (!addr_matched) { p_dev_rec->ble.active_addr_type = BTM_BLE_ADDR_PSEUDO; } if (p_dev_rec->ble.ble_addr_type == BLE_ADDR_RANDOM && !addr_matched) { memcpy(p_dev_rec->ble.cur_rand_addr, bda, BD_ADDR_LEN); } #endif p_cb->inq_var.directed_conn = BTM_BLE_CONNECT_EVT; return; } /***************************************************************************** ** Function btm_ble_conn_complete ** ** Description LE connection complete. ** ******************************************************************************/ void btm_ble_conn_complete(UINT8 *p, UINT16 evt_len, BOOLEAN enhanced) { #if (BLE_PRIVACY_SPT == TRUE ) UINT8 *p_data = p, peer_addr_type; #endif ///BLE_PRIVACY_SPT == TRUE UINT8 role, status, bda_type; UINT16 handle; BD_ADDR bda; BD_ADDR local_rpa, peer_rpa; UINT16 conn_interval, conn_latency, conn_timeout; BOOLEAN match = FALSE; UNUSED(evt_len); STREAM_TO_UINT8 (status, p); STREAM_TO_UINT16 (handle, p); STREAM_TO_UINT8 (role, p); STREAM_TO_UINT8 (bda_type, p); STREAM_TO_BDADDR (bda, p); BTM_TRACE_DEBUG("status = %d, handle = %d, role = %d, bda_type = %d",status,handle,role,bda_type); if (status == 0) { if (enhanced) { STREAM_TO_BDADDR (local_rpa, p); STREAM_TO_BDADDR (peer_rpa, p); #if (CONTROLLER_RPA_LIST_ENABLE == TRUE) BD_ADDR dummy_bda = {0}; /* For controller generates RPA, if resolving list contains no matching entry, it use identity address. * So we should update own addr type in Host */ if (memcmp(local_rpa, dummy_bda, BD_ADDR_LEN)) { btm_cb.ble_ctr_cb.addr_mgnt_cb.own_addr_type |= (BLE_ADDR_TYPE_ID_BIT); BTM_UpdateAddrInfor(btm_cb.ble_ctr_cb.addr_mgnt_cb.own_addr_type, local_rpa); } else { btm_cb.ble_ctr_cb.addr_mgnt_cb.own_addr_type &= (~BLE_ADDR_TYPE_ID_BIT); } #endif } #if (BLE_PRIVACY_SPT == TRUE ) peer_addr_type = bda_type; match = btm_identity_addr_to_random_pseudo (bda, &bda_type, FALSE); /* possibly receive connection complete with resolvable random on slave role while the device has been paired */ /* It will cause that scanner doesn't send scan request to advertiser * which has sent IRK to us and we have stored the IRK in controller. * It is a hardware limitation. The preliminary solution is not to * send key to the controller, but to resolve the random address in host. * so we need send the real address information to controller to connect. * Once the connection is successful, resolve device address whether it is * slave or master*/ #if CONTROLLER_RPA_LIST_ENABLE if (!match && role == HCI_ROLE_SLAVE && bda_type != BLE_ADDR_PUBLIC && BTM_BLE_IS_RESOLVE_BDA(bda)) { #else if (!match && bda_type != BLE_ADDR_PUBLIC && BTM_BLE_IS_RESOLVE_BDA(bda)) { #endif // save the enhanced value to used in btm_ble_resolve_random_addr_on_conn_cmpl func. temp_enhanced = enhanced; btm_ble_resolve_random_addr(bda, btm_ble_resolve_random_addr_on_conn_cmpl, p_data); // set back the temp enhanced to default after used. temp_enhanced = FALSE; } else #endif { STREAM_TO_UINT16 (conn_interval, p); STREAM_TO_UINT16 (conn_latency, p); STREAM_TO_UINT16 (conn_timeout, p); handle = HCID_GET_HANDLE (handle); btm_ble_connected(bda, handle, HCI_ENCRYPT_MODE_DISABLED, role, bda_type, match); l2cble_conn_comp (handle, role, bda, bda_type, conn_interval, conn_latency, conn_timeout); #if (BLE_PRIVACY_SPT == TRUE) if (enhanced) { btm_ble_refresh_local_resolvable_private_addr(bda, local_rpa); if (peer_addr_type & BLE_ADDR_TYPE_ID_BIT) { btm_ble_refresh_peer_resolvable_private_addr(bda, peer_rpa, BLE_ADDR_RANDOM); } } #endif } } else { role = HCI_ROLE_UNKNOWN; if (status != HCI_ERR_DIRECTED_ADVERTISING_TIMEOUT) { btm_ble_set_conn_st(BLE_CONN_IDLE); #if (defined BLE_PRIVACY_SPT && BLE_PRIVACY_SPT == TRUE) btm_ble_disable_resolving_list(BTM_BLE_RL_INIT, TRUE); #endif } else { #if (defined BLE_PRIVACY_SPT && BLE_PRIVACY_SPT == TRUE) btm_cb.ble_ctr_cb.inq_var.adv_mode = BTM_BLE_ADV_DISABLE; btm_ble_disable_resolving_list(BTM_BLE_RL_ADV, TRUE); #endif } } BOOLEAN bg_con = btm_ble_update_mode_operation(role, bda, status); if (status != HCI_SUCCESS && !bg_con) { // notify connection failed l2c_link_hci_disc_comp (handle, status); #if (SMP_INCLUDED == TRUE) /* Notify security manager */ btm_sec_disconnected (handle, status); #endif ///SMP_INCLUDED == TRUE } } /***************************************************************************** ** Function btm_ble_create_ll_conn_complete ** ** Description LE connection complete. ** ******************************************************************************/ void btm_ble_create_ll_conn_complete (UINT8 status) { if (status != HCI_SUCCESS) { btm_ble_set_conn_st(BLE_CONN_IDLE); btm_ble_update_mode_operation(HCI_ROLE_UNKNOWN, NULL, status); if(l2cb.is_ble_connecting) { /* see L2CA_CancelBleConnectReq() */ tL2C_LCB *p_lcb = l2cu_find_lcb_by_bd_addr(l2cb.ble_connecting_bda, BT_TRANSPORT_LE); /* Do not remove lcb if an LE link is already up as a peripheral */ if (p_lcb != NULL && !(p_lcb->link_role == HCI_ROLE_SLAVE && BTM_LE_ACL_IS_CONNECTED(l2cb.ble_connecting_bda))) { p_lcb->disc_reason = L2CAP_CONN_CANCEL; l2cu_release_lcb (p_lcb); } } } } /***************************************************************************** ** Function btm_ble_create_conn_cancel_complete ** ** Description LE connection cancel complete. ** ******************************************************************************/ void btm_ble_create_conn_cancel_complete (UINT8 *p) { UINT8 status; STREAM_TO_UINT8 (status, p); switch (status) { case HCI_SUCCESS: if (btm_ble_get_conn_st() == BLE_CONN_CANCEL) { btm_ble_set_conn_st (BLE_CONN_IDLE); } break; default: break; } } /***************************************************************************** ** Function btm_proc_smp_cback ** ** Description This function is the SMP callback handler. ** ******************************************************************************/ #if (SMP_INCLUDED == TRUE) UINT8 btm_proc_smp_cback(tSMP_EVT event, BD_ADDR bd_addr, tSMP_EVT_DATA *p_data) { tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); UINT8 res = 0; BTM_TRACE_DEBUG ("btm_proc_smp_cback event = %d", event); if (p_dev_rec != NULL) { switch (event) { case SMP_IO_CAP_REQ_EVT: btm_ble_io_capabilities_req(p_dev_rec, (tBTM_LE_IO_REQ *)&p_data->io_req); break; case SMP_BR_KEYS_REQ_EVT: btm_ble_br_keys_req(p_dev_rec, (tBTM_LE_IO_REQ *)&p_data->io_req); break; case SMP_PASSKEY_REQ_EVT: case SMP_PASSKEY_NOTIF_EVT: case SMP_OOB_REQ_EVT: case SMP_NC_REQ_EVT: case SMP_SC_OOB_REQ_EVT: /* fall through */ p_dev_rec->sec_flags |= BTM_SEC_LE_AUTHENTICATED; case SMP_SEC_REQUEST_EVT: if (event == SMP_SEC_REQUEST_EVT && btm_cb.pairing_state != BTM_PAIR_STATE_IDLE) { BTM_TRACE_DEBUG("%s: Ignoring SMP Security request", __func__); break; } memcpy (btm_cb.pairing_bda, bd_addr, BD_ADDR_LEN); p_dev_rec->sec_state = BTM_SEC_STATE_AUTHENTICATING; btm_cb.pairing_flags |= BTM_PAIR_FLAGS_LE_ACTIVE; /* fall through */ case SMP_COMPLT_EVT: if (btm_cb.api.p_le_callback) { /* the callback function implementation may change the IO capability... */ BTM_TRACE_DEBUG ("btm_cb.api.p_le_callback=%p", btm_cb.api.p_le_callback ); (*btm_cb.api.p_le_callback) (event, bd_addr, (tBTM_LE_EVT_DATA *)p_data); } if (event == SMP_COMPLT_EVT) { BTM_TRACE_DEBUG ("evt=SMP_COMPLT_EVT before update sec_level=0x%x sec_flags=0x%x", p_data->cmplt.sec_level , p_dev_rec->sec_flags ); res = (p_data->cmplt.reason == SMP_SUCCESS) ? BTM_SUCCESS : BTM_ERR_PROCESSING; BTM_TRACE_DEBUG ("after update result=%d sec_level=0x%x sec_flags=0x%x", res, p_data->cmplt.sec_level , p_dev_rec->sec_flags ); if (p_data->cmplt.is_pair_cancel && btm_cb.api.p_bond_cancel_cmpl_callback ) { BTM_TRACE_DEBUG ("Pairing Cancel completed"); (*btm_cb.api.p_bond_cancel_cmpl_callback)(BTM_SUCCESS); } #if BTM_BLE_CONFORMANCE_TESTING == TRUE if (res != BTM_SUCCESS) { if (!btm_cb.devcb.no_disc_if_pair_fail && p_data->cmplt.reason != SMP_CONN_TOUT) { BTM_TRACE_DEBUG ("Pairing failed - prepare to remove ACL"); l2cu_start_post_bond_timer(p_dev_rec->ble_hci_handle); } else { BTM_TRACE_DEBUG ("Pairing failed - Not Removing ACL"); p_dev_rec->sec_state = BTM_SEC_STATE_IDLE; } } #else if (res != BTM_SUCCESS && p_data->cmplt.reason != SMP_CONN_TOUT) { BTM_TRACE_DEBUG ("Pairing failed - prepare to remove ACL"); l2cu_start_post_bond_timer(p_dev_rec->ble_hci_handle); } #endif BTM_TRACE_DEBUG ("btm_cb pairing_state=%x pairing_flags=%x", btm_cb.pairing_state, btm_cb.pairing_flags); BTM_TRACE_DEBUG ("btm_cb.pairing_bda %02x:%02x:%02x:%02x:%02x:%02x", btm_cb.pairing_bda[0], btm_cb.pairing_bda[1], btm_cb.pairing_bda[2], btm_cb.pairing_bda[3], btm_cb.pairing_bda[4], btm_cb.pairing_bda[5]); /* Reset btm state only if the callback address matches pairing address*/ if (memcmp(bd_addr, btm_cb.pairing_bda, BD_ADDR_LEN) == 0) { memset (btm_cb.pairing_bda, 0xff, BD_ADDR_LEN); btm_cb.pairing_state = BTM_PAIR_STATE_IDLE; btm_cb.pairing_flags = 0; } if (res == BTM_SUCCESS) { p_dev_rec->sec_state = BTM_SEC_STATE_IDLE; #if (defined BLE_PRIVACY_SPT && BLE_PRIVACY_SPT == TRUE) /* add all bonded device into resolving list if IRK is available*/ btm_ble_resolving_list_load_dev(p_dev_rec); #endif } btm_sec_dev_rec_cback_event(p_dev_rec, res, TRUE); } break; default: BTM_TRACE_DEBUG ("unknown event = %d", event); break; } } else { if (event == SMP_SC_LOC_OOB_DATA_UP_EVT) { tBTM_LE_EVT_DATA evt_data; memcpy(&evt_data.local_oob_data, &p_data->loc_oob_data, sizeof(tSMP_LOC_OOB_DATA)); if (btm_cb.api.p_le_callback) { (*btm_cb.api.p_le_callback)(event, bd_addr, &evt_data); } } else { BTM_TRACE_ERROR("btm_proc_smp_cback received for unknown device"); } } return 0; } #endif ///SMP_INCLUDED == TRUE /******************************************************************************* ** ** Function BTM_BleDataSignature ** ** Description This function is called to sign the data using AES128 CMAC ** algorithm. ** ** Parameter bd_addr: target device the data to be signed for. ** p_text: singing data ** len: length of the data to be signed. ** signature: output parameter where data signature is going to ** be stored. ** ** Returns TRUE if signing successful, otherwise FALSE. ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) BOOLEAN BTM_BleDataSignature (BD_ADDR bd_addr, UINT8 *p_text, UINT16 len, BLE_SIGNATURE signature) { tBTM_SEC_DEV_REC *p_rec = btm_find_dev (bd_addr); BTM_TRACE_DEBUG ("%s", __func__); #endif ///SMP_INCLUDED == TRUE BOOLEAN ret = FALSE; #if (SMP_INCLUDED == TRUE) if (p_rec == NULL) { BTM_TRACE_ERROR("%s-data signing can not be done from unknown device", __func__); } else { UINT8 *p_mac = (UINT8 *)signature; UINT8 *p_buf, *pp; if ((p_buf = (UINT8 *)osi_malloc((UINT16)(len + 4))) != NULL) { BTM_TRACE_DEBUG("%s-Start to generate Local CSRK", __func__); pp = p_buf; /* prepare plain text */ if (p_text) { memcpy(p_buf, p_text, len); pp = (p_buf + len); } UINT32_TO_STREAM(pp, p_rec->ble.keys.local_counter); UINT32_TO_STREAM(p_mac, p_rec->ble.keys.local_counter); if ((ret = aes_cipher_msg_auth_code(p_rec->ble.keys.lcsrk, p_buf, (UINT16)(len + 4), BTM_CMAC_TLEN_SIZE, p_mac)) == TRUE) { btm_ble_increment_sign_ctr(bd_addr, TRUE); } BTM_TRACE_DEBUG("%s p_mac = %p", __func__, p_mac); BTM_TRACE_DEBUG("p_mac[0] = 0x%02x p_mac[1] = 0x%02x p_mac[2] = 0x%02x p_mac[3] = 0x%02x", *p_mac, *(p_mac + 1), *(p_mac + 2), *(p_mac + 3)); BTM_TRACE_DEBUG("p_mac[4] = 0x%02x p_mac[5] = 0x%02x p_mac[6] = 0x%02x p_mac[7] = 0x%02x", *(p_mac + 4), *(p_mac + 5), *(p_mac + 6), *(p_mac + 7)); osi_free(p_buf); } } return ret; } /******************************************************************************* ** ** Function BTM_BleVerifySignature ** ** Description This function is called to verify the data signature ** ** Parameter bd_addr: target device the data to be signed for. ** p_orig: original data before signature. ** len: length of the signing data ** counter: counter used when doing data signing ** p_comp: signature to be compared against. ** Returns TRUE if signature verified correctly; otherwise FALSE. ** *******************************************************************************/ BOOLEAN BTM_BleVerifySignature (BD_ADDR bd_addr, UINT8 *p_orig, UINT16 len, UINT32 counter, UINT8 *p_comp) { BOOLEAN verified = FALSE; tBTM_SEC_DEV_REC *p_rec = btm_find_dev (bd_addr); UINT8 p_mac[BTM_CMAC_TLEN_SIZE]; if (p_rec == NULL || (p_rec && !(p_rec->ble.key_type & BTM_LE_KEY_PCSRK))) { BTM_TRACE_ERROR("can not verify signature for unknown device"); } else if (counter < p_rec->ble.keys.counter) { BTM_TRACE_ERROR("signature received with out dated sign counter"); } else if (p_orig == NULL) { BTM_TRACE_ERROR("No signature to verify"); } else { BTM_TRACE_DEBUG ("%s rcv_cnt=%d >= expected_cnt=%d", __func__, counter, p_rec->ble.keys.counter); if (aes_cipher_msg_auth_code(p_rec->ble.keys.pcsrk, p_orig, len, BTM_CMAC_TLEN_SIZE, p_mac)) { if (memcmp(p_mac, p_comp, BTM_CMAC_TLEN_SIZE) == 0) { btm_ble_increment_sign_ctr(bd_addr, FALSE); verified = TRUE; } } } return verified; } #endif /* SMP_INCLUDED */ /******************************************************************************* ** ** Function BTM_GetLeSecurityState ** ** Description This function is called to get security mode 1 flags and ** encryption key size for LE peer. ** ** Returns BOOLEAN TRUE if LE device is found, FALSE otherwise. ** *******************************************************************************/ BOOLEAN BTM_GetLeSecurityState (BD_ADDR bd_addr, UINT8 *p_le_dev_sec_flags, UINT8 *p_le_key_size) { #if (BLE_INCLUDED == TRUE && SMP_INCLUDED == TRUE) tBTM_SEC_DEV_REC *p_dev_rec; UINT16 dev_rec_sec_flags; #endif *p_le_dev_sec_flags = 0; *p_le_key_size = 0; #if (BLE_INCLUDED == TRUE && SMP_INCLUDED == TRUE) if ((p_dev_rec = btm_find_dev (bd_addr)) == NULL) { BTM_TRACE_ERROR ("%s fails", __func__); return (FALSE); } if (p_dev_rec->ble_hci_handle == BTM_SEC_INVALID_HANDLE) { BTM_TRACE_ERROR ("%s-this is not LE device", __func__); return (FALSE); } dev_rec_sec_flags = p_dev_rec->sec_flags; if (dev_rec_sec_flags & BTM_SEC_LE_ENCRYPTED) { /* link is encrypted with LTK or STK */ *p_le_key_size = p_dev_rec->enc_key_size; *p_le_dev_sec_flags |= BTM_SEC_LE_LINK_ENCRYPTED; *p_le_dev_sec_flags |= (dev_rec_sec_flags & BTM_SEC_LE_AUTHENTICATED) ? BTM_SEC_LE_LINK_PAIRED_WITH_MITM /* set auth LTK flag */ : BTM_SEC_LE_LINK_PAIRED_WITHOUT_MITM; /* set unauth LTK flag */ } else if (p_dev_rec->ble.key_type & BTM_LE_KEY_PENC) { /* link is unencrypted, still LTK is available */ *p_le_key_size = p_dev_rec->ble.keys.key_size; *p_le_dev_sec_flags |= (dev_rec_sec_flags & BTM_SEC_LE_LINK_KEY_AUTHED) ? BTM_SEC_LE_LINK_PAIRED_WITH_MITM /* set auth LTK flag */ : BTM_SEC_LE_LINK_PAIRED_WITHOUT_MITM; /* set unauth LTK flag */ } BTM_TRACE_DEBUG ("%s - le_dev_sec_flags: 0x%02x, le_key_size: %d", __func__, *p_le_dev_sec_flags, *p_le_key_size); return TRUE; #else return FALSE; #endif } /******************************************************************************* ** ** Function BTM_BleSecurityProcedureIsRunning ** ** Description This function indicates if LE security procedure is ** currently running with the peer. ** ** Returns BOOLEAN TRUE if security procedure is running, FALSE otherwise. ** *******************************************************************************/ BOOLEAN BTM_BleSecurityProcedureIsRunning(BD_ADDR bd_addr) { #if (BLE_INCLUDED == TRUE) tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); if (p_dev_rec == NULL) { BTM_TRACE_ERROR ("%s device with BDA: %08x%04x is not found", __func__, (bd_addr[0] << 24) + (bd_addr[1] << 16) + (bd_addr[2] << 8) + bd_addr[3], (bd_addr[4] << 8) + bd_addr[5]); return FALSE; } return (p_dev_rec->sec_state == BTM_SEC_STATE_ENCRYPTING || p_dev_rec->sec_state == BTM_SEC_STATE_AUTHENTICATING); #else return FALSE; #endif } /******************************************************************************* ** ** Function BTM_BleGetSupportedKeySize ** ** Description This function gets the maximum encryption key size in bytes ** the local device can support. ** record. ** ** Returns the key size or 0 if the size can't be retrieved. ** *******************************************************************************/ extern UINT8 BTM_BleGetSupportedKeySize (BD_ADDR bd_addr) { #ifndef L2CAP_LE_COC_INCLUDED #define L2CAP_LE_COC_INCLUDED FALSE #endif #if ((BLE_INCLUDED == TRUE) && (L2CAP_LE_COC_INCLUDED == TRUE)) tBTM_SEC_DEV_REC *p_dev_rec = btm_find_dev (bd_addr); tBTM_LE_IO_REQ dev_io_cfg; UINT8 callback_rc; if (!p_dev_rec) { BTM_TRACE_ERROR ("%s device with BDA: %08x%04x is not found", __func__, (bd_addr[0] << 24) + (bd_addr[1] << 16) + (bd_addr[2] << 8) + bd_addr[3], (bd_addr[4] << 8) + bd_addr[5]); return 0; } if (btm_cb.api.p_le_callback == NULL) { BTM_TRACE_ERROR ("%s can't access supported key size", __func__); return 0; } callback_rc = (*btm_cb.api.p_le_callback) (BTM_LE_IO_REQ_EVT, p_dev_rec->bd_addr, (tBTM_LE_EVT_DATA *) &dev_io_cfg); if (callback_rc != BTM_SUCCESS) { BTM_TRACE_ERROR ("%s can't access supported key size", __func__); return 0; } BTM_TRACE_DEBUG ("%s device supports key size = %d", __func__, dev_io_cfg.max_key_size); return (dev_io_cfg.max_key_size); #else return 0; #endif } /******************************************************************************* ** Utility functions for LE device IR/ER generation *******************************************************************************/ /******************************************************************************* ** ** Function btm_notify_new_key ** ** Description This function is to notify application new keys have been ** generated. ** ** Returns void ** *******************************************************************************/ #if (SMP_INCLUDED == TRUE) static void btm_notify_new_key(UINT8 key_type) { tBTM_BLE_LOCAL_KEYS *p_locak_keys = NULL; BTM_TRACE_DEBUG ("btm_notify_new_key key_type=%d", key_type); if (btm_cb.api.p_le_key_callback) { switch (key_type) { case BTM_BLE_KEY_TYPE_ID: BTM_TRACE_DEBUG ("BTM_BLE_KEY_TYPE_ID"); p_locak_keys = (tBTM_BLE_LOCAL_KEYS *)&btm_cb.devcb.id_keys; break; case BTM_BLE_KEY_TYPE_ER: BTM_TRACE_DEBUG ("BTM_BLE_KEY_TYPE_ER"); p_locak_keys = (tBTM_BLE_LOCAL_KEYS *)&btm_cb.devcb.ble_encryption_key_value; break; default: BTM_TRACE_ERROR("unknown key type: %d", key_type); break; } if (p_locak_keys != NULL) { (*btm_cb.api.p_le_key_callback) (key_type, p_locak_keys); } } } /******************************************************************************* ** ** Function btm_ble_process_er2 ** ** Description This function is called when ER is generated, store it in ** local control block. ** ** Returns void ** *******************************************************************************/ static void btm_ble_process_er2(tBTM_RAND_ENC *p) { BTM_TRACE_DEBUG ("btm_ble_process_er2"); if (p && p->opcode == HCI_BLE_RAND) { memcpy(&btm_cb.devcb.ble_encryption_key_value[8], p->param_buf, BT_OCTET8_LEN); btm_notify_new_key(BTM_BLE_KEY_TYPE_ER); } else { BTM_TRACE_ERROR("Generating ER2 exception."); memset(&btm_cb.devcb.ble_encryption_key_value, 0, sizeof(BT_OCTET16)); } } /******************************************************************************* ** ** Function btm_ble_process_er ** ** Description This function is called when ER is generated, store it in ** local control block. ** ** Returns void ** *******************************************************************************/ static void btm_ble_process_er(tBTM_RAND_ENC *p) { BTM_TRACE_DEBUG ("btm_ble_process_er"); if (p && p->opcode == HCI_BLE_RAND) { memcpy(&btm_cb.devcb.ble_encryption_key_value[0], p->param_buf, BT_OCTET8_LEN); if (!btsnd_hcic_ble_rand((void *)btm_ble_process_er2)) { memset(&btm_cb.devcb.ble_encryption_key_value, 0, sizeof(BT_OCTET16)); BTM_TRACE_ERROR("Generating ER2 failed."); } } else { BTM_TRACE_ERROR("Generating ER1 exception."); } } /******************************************************************************* ** ** Function btm_ble_process_irk ** ** Description This function is called when IRK is generated, store it in ** local control block. ** ** Returns void ** *******************************************************************************/ static void btm_ble_process_irk(tSMP_ENC *p) { BTM_TRACE_DEBUG ("btm_ble_process_irk"); if (p && p->opcode == HCI_BLE_ENCRYPT) { memcpy(btm_cb.devcb.id_keys.irk, p->param_buf, BT_OCTET16_LEN); btm_notify_new_key(BTM_BLE_KEY_TYPE_ID); #if (CONTROLLER_RPA_LIST_ENABLE == TRUE) btm_ble_add_default_entry_to_resolving_list(); #endif #if (BLE_PRIVACY_SPT == TRUE) && (CONTROLLER_RPA_LIST_ENABLE == FALSE) /* if privacy is enabled, new RPA should be calculated */ if (btm_cb.ble_ctr_cb.privacy_mode != BTM_PRIVACY_NONE) { btm_gen_resolvable_private_addr((void *)btm_gen_resolve_paddr_low); } #endif } else { BTM_TRACE_ERROR("Generating IRK exception."); } /* proceed generate ER */ if (!btsnd_hcic_ble_rand((void *)btm_ble_process_er)) { BTM_TRACE_ERROR("Generating ER failed."); } } /******************************************************************************* ** ** Function btm_ble_process_dhk ** ** Description This function is called when DHK is calculated, store it in ** local control block, and proceed to generate ER, a 128-bits ** random number. ** ** Returns void ** *******************************************************************************/ static void btm_ble_process_dhk(tSMP_ENC *p) { UINT8 btm_ble_irk_pt = 0x01; tSMP_ENC output; BTM_TRACE_DEBUG ("btm_ble_process_dhk"); if (p && p->opcode == HCI_BLE_ENCRYPT) { memcpy(btm_cb.devcb.id_keys.dhk, p->param_buf, BT_OCTET16_LEN); BTM_TRACE_DEBUG("BLE DHK generated."); /* IRK = D1(IR, 1) */ if (!SMP_Encrypt(btm_cb.devcb.id_keys.ir, BT_OCTET16_LEN, &btm_ble_irk_pt, 1, &output)) { /* reset all identity root related key */ memset(&btm_cb.devcb.id_keys, 0, sizeof(tBTM_BLE_LOCAL_ID_KEYS)); } else { btm_ble_process_irk(&output); } } else { /* reset all identity root related key */ memset(&btm_cb.devcb.id_keys, 0, sizeof(tBTM_BLE_LOCAL_ID_KEYS)); } } /******************************************************************************* ** ** Function btm_ble_process_ir2 ** ** Description This function is called when IR is generated, proceed to calculate ** DHK = Eir({0x03, 0, 0 ...}) ** ** ** Returns void ** *******************************************************************************/ static void btm_ble_process_ir2(tBTM_RAND_ENC *p) { UINT8 btm_ble_dhk_pt = 0x03; tSMP_ENC output; BTM_TRACE_DEBUG ("btm_ble_process_ir2"); if (p && p->opcode == HCI_BLE_RAND) { /* remembering in control block */ memcpy(&btm_cb.devcb.id_keys.ir[8], p->param_buf, BT_OCTET8_LEN); /* generate DHK= Eir({0x03, 0x00, 0x00 ...}) */ SMP_Encrypt(btm_cb.devcb.id_keys.ir, BT_OCTET16_LEN, &btm_ble_dhk_pt, 1, &output); btm_ble_process_dhk(&output); BTM_TRACE_DEBUG("BLE IR generated."); } else { memset(&btm_cb.devcb.id_keys, 0, sizeof(tBTM_BLE_LOCAL_ID_KEYS)); } } /******************************************************************************* ** ** Function btm_ble_process_ir ** ** Description This function is called when IR is generated, proceed to calculate ** DHK = Eir({0x02, 0, 0 ...}) ** ** ** Returns void ** *******************************************************************************/ static void btm_ble_process_ir(tBTM_RAND_ENC *p) { BTM_TRACE_DEBUG ("btm_ble_process_ir"); if (p && p->opcode == HCI_BLE_RAND) { /* remembering in control block */ memcpy(btm_cb.devcb.id_keys.ir, p->param_buf, BT_OCTET8_LEN); if (!btsnd_hcic_ble_rand((void *)btm_ble_process_ir2)) { BTM_TRACE_ERROR("Generating IR2 failed."); memset(&btm_cb.devcb.id_keys, 0, sizeof(tBTM_BLE_LOCAL_ID_KEYS)); } } } /******************************************************************************* ** ** Function btm_ble_reset_id ** ** Description This function is called to reset LE device identity. ** ** Returns void ** *******************************************************************************/ void btm_ble_reset_id( void ) { BTM_TRACE_DEBUG ("btm_ble_reset_id"); /* regenrate Identity Root*/ if (!btsnd_hcic_ble_rand((void *)btm_ble_process_ir)) { BTM_TRACE_DEBUG("Generating IR failed."); } } #endif ///SMP_INCLUDED == TRUE #if BTM_BLE_CONFORMANCE_TESTING == TRUE /******************************************************************************* ** ** Function btm_ble_set_no_disc_if_pair_fail ** ** Description This function indicates that whether no disconnect of the ACL ** should be used if pairing failed ** ** Returns void ** *******************************************************************************/ void btm_ble_set_no_disc_if_pair_fail(BOOLEAN disable_disc ) { BTM_TRACE_DEBUG ("btm_ble_set_disc_enable_if_pair_fail disable_disc=%d", disable_disc); btm_cb.devcb.no_disc_if_pair_fail = disable_disc; } /******************************************************************************* ** ** Function btm_ble_set_test_mac_value ** ** Description This function set test MAC value ** ** Returns void ** *******************************************************************************/ void btm_ble_set_test_mac_value(BOOLEAN enable, UINT8 *p_test_mac_val ) { BTM_TRACE_DEBUG ("btm_ble_set_test_mac_value enable=%d", enable); btm_cb.devcb.enable_test_mac_val = enable; memcpy(btm_cb.devcb.test_mac, p_test_mac_val, BT_OCTET8_LEN); } /******************************************************************************* ** ** Function btm_ble_set_test_local_sign_cntr_value ** ** Description This function set test local sign counter value ** ** Returns void ** *******************************************************************************/ void btm_ble_set_test_local_sign_cntr_value(BOOLEAN enable, UINT32 test_local_sign_cntr ) { BTM_TRACE_DEBUG ("btm_ble_set_test_local_sign_cntr_value enable=%d local_sign_cntr=%d", enable, test_local_sign_cntr); btm_cb.devcb.enable_test_local_sign_cntr = enable; btm_cb.devcb.test_local_sign_cntr = test_local_sign_cntr; } /******************************************************************************* ** ** Function btm_set_random_address ** ** Description This function set a random address to local controller. ** ** Returns void ** *******************************************************************************/ void btm_set_random_address(BD_ADDR random_bda) { tBTM_LE_RANDOM_CB *p_cb = &btm_cb.ble_ctr_cb.addr_mgnt_cb; BOOLEAN adv_mode = btm_cb.ble_ctr_cb.inq_var.adv_mode ; BTM_TRACE_DEBUG ("btm_set_random_address"); if (adv_mode == BTM_BLE_ADV_ENABLE) { btsnd_hcic_ble_set_adv_enable (BTM_BLE_ADV_DISABLE); } memcpy(p_cb->private_addr, random_bda, BD_ADDR_LEN); btsnd_hcic_ble_set_random_addr(p_cb->private_addr); if (adv_mode == BTM_BLE_ADV_ENABLE) { btsnd_hcic_ble_set_adv_enable (BTM_BLE_ADV_ENABLE); } } /******************************************************************************* ** ** Function btm_ble_set_keep_rfu_in_auth_req ** ** Description This function indicates if RFU bits have to be kept as is ** (by default they have to be set to 0 by the sender). ** ** Returns void ** *******************************************************************************/ void btm_ble_set_keep_rfu_in_auth_req(BOOLEAN keep_rfu) { BTM_TRACE_DEBUG ("btm_ble_set_keep_rfu_in_auth_req keep_rfus=%d", keep_rfu); btm_cb.devcb.keep_rfu_in_auth_req = keep_rfu; } #endif /* BTM_BLE_CONFORMANCE_TESTING */ /******************************************************************************* ** ** Function btm_get_current_conn_params ** ** Description This function is called to get current connection parameters ** information of the device ** ** Returns TRUE if the information is geted, else FALSE ** *******************************************************************************/ BOOLEAN btm_get_current_conn_params(BD_ADDR bda, UINT16 *interval, UINT16 *latency, UINT16 *timeout) { if( (interval == NULL) || (latency == NULL) || (timeout == NULL) ) { BTM_TRACE_ERROR("%s invalid parameters ", __func__); return FALSE; } tL2C_LCB *p_lcb = l2cu_find_lcb_by_bd_addr(bda, BT_TRANSPORT_LE); if(p_lcb != NULL) { (*interval) = p_lcb->current_used_conn_interval; (*latency) = p_lcb->current_used_conn_latency; (*timeout) = p_lcb->current_used_conn_timeout; return TRUE; } BTM_TRACE_WARNING("%s Device is not connected", __func__); return FALSE; } uint8_t btm_ble_adv_active_count(void) { uint8_t count = 0; tBTM_BLE_INQ_CB *p_cb = &btm_cb.ble_ctr_cb.inq_var; if (p_cb->state & BTM_BLE_ADVERTISING) { count++; } return count; } uint8_t btm_ble_scan_active_count(void) { uint8_t count = 0; tBTM_BLE_INQ_CB *p_cb = &btm_cb.ble_ctr_cb.inq_var; if (p_cb->state & BTM_BLE_SCANNING) { count++; } return count; } #if (SMP_INCLUDED == TRUE) uint8_t btm_ble_sec_dev_active_count(void) { tBTM_SEC_DEV_REC *p_dev_rec = NULL; list_node_t *p_node = NULL; uint8_t count = 0; /* First look for the non-paired devices for the oldest entry */ for (p_node = list_begin(btm_cb.p_sec_dev_rec_list); p_node; p_node = list_next(p_node)) { p_dev_rec = list_node(p_node); if (p_dev_rec && (p_dev_rec->sec_flags & BTM_SEC_IN_USE) && (p_dev_rec->ble.key_type != BTM_LE_KEY_NONE)) { count++; } } return count; } #endif #if (BLE_PRIVACY_SPT == TRUE) uint8_t btm_ble_privacy_is_enabled(void) { tBTM_BLE_CB *p_cb = &btm_cb.ble_ctr_cb; return (p_cb->privacy_mode != BTM_PRIVACY_NONE); } #endif #endif /* BLE_INCLUDED */