// Copyright 2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "test_utils.h" #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3) //API only supported for C3 now. #include "driver/adc.h" #include "esp_adc_cal.h" #include "esp_log.h" #define TEST_COUNT 4096 #define MAX_ARRAY_SIZE 4096 #define TEST_ATTEN ADC_ATTEN_MAX //Set to ADC_ATTEN_*db to test a single attenuation only static int s_adc_count[MAX_ARRAY_SIZE]={}; static int s_adc_offset = -1; static int insert_point(uint32_t value) { const bool fixed_size = true; if (s_adc_offset < 0) { if (fixed_size) { TEST_ASSERT_GREATER_OR_EQUAL(4096, MAX_ARRAY_SIZE); s_adc_offset = 0; //Fixed to 0 because the array can hold all the data in 12 bits } else { s_adc_offset = MAX((int)value - MAX_ARRAY_SIZE/2, 0); } } if (!fixed_size && (value < s_adc_offset || value >= s_adc_offset + MAX_ARRAY_SIZE)) { TEST_ASSERT_GREATER_OR_EQUAL(s_adc_offset, value); TEST_ASSERT_LESS_THAN(s_adc_offset + MAX_ARRAY_SIZE, value); } s_adc_count[value - s_adc_offset] ++; return value - s_adc_offset; } static void reset_array(void) { memset(s_adc_count, 0, sizeof(s_adc_count)); s_adc_offset = -1; } static uint32_t get_average(void) { uint32_t sum = 0; int count = 0; for (int i = 0; i < MAX_ARRAY_SIZE; i++) { sum += s_adc_count[i] * (s_adc_offset+i); count += s_adc_count[i]; } return sum/count; } static void print_summary(bool figure) { const int MAX_WIDTH=20; int max_count = 0; int start = -1; int end = -1; uint32_t sum = 0; int count = 0; for (int i = 0; i < MAX_ARRAY_SIZE; i++) { if (s_adc_count[i] > max_count) { max_count = s_adc_count[i]; } if (s_adc_count[i] > 0 && start < 0) { start = i; } if (s_adc_count[i] > 0) { end = i; } count += s_adc_count[i]; sum += s_adc_count[i] * (s_adc_offset+i); } if (figure) { for (int i = start; i <= end; i++) { printf("%4d ", i+s_adc_offset); int count = s_adc_count[i] * MAX_WIDTH / max_count; for (int j = 0; j < count; j++) { putchar('|'); } printf(" %d\n", s_adc_count[i]); } } float average = (float)sum/count; float variation_square = 0; for (int i = start; i <= end; i ++) { if (s_adc_count[i] == 0) { continue; } float delta = i + s_adc_offset - average; variation_square += (delta * delta) * s_adc_count[i]; } printf("%d points.\n", count); printf("average: %.1f\n", (float)sum/count); printf("std: %.2f\n", sqrt(variation_square/count)); } static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num, adc_atten_t atten) { adc_digi_init_config_t adc_dma_config = { .max_store_buf_size = TEST_COUNT*2, .conv_num_each_intr = 128, .dma_chan = SOC_GDMA_ADC_DMA_CHANNEL, .adc1_chan_mask = adc1_chan_mask, .adc2_chan_mask = adc2_chan_mask, }; TEST_ESP_OK(adc_digi_initialize(&adc_dma_config)); adc_digi_pattern_table_t adc_pattern[10] = {0}; adc_digi_config_t dig_cfg = { .conv_limit_en = 0, .conv_limit_num = 250, .sample_freq_hz = 83333, }; dig_cfg.adc_pattern_len = channel_num; for (int i = 0; i < channel_num; i++) { uint8_t unit = ((channel[i] >> 3) & 0x1); uint8_t ch = channel[i] & 0x7; adc_pattern[i].atten = atten; adc_pattern[i].channel = ch; adc_pattern[i].unit = unit; } dig_cfg.adc_pattern = adc_pattern; TEST_ESP_OK(adc_digi_controller_config(&dig_cfg)); } TEST_CASE("test_adc_dma", "[adc][ignore][manual]") { uint16_t adc1_chan_mask = BIT(2); uint16_t adc2_chan_mask = 0; adc_channel_t channel[1] = {ADC1_CHANNEL_2}; adc_atten_t target_atten = TEST_ATTEN; const int output_data_size = sizeof(adc_digi_output_data_t); int buffer_size = TEST_COUNT*output_data_size; uint8_t* read_buf = malloc(buffer_size); TEST_ASSERT_NOT_NULL(read_buf); adc_atten_t atten; bool print_figure; if (target_atten == ADC_ATTEN_MAX) { atten = ADC_ATTEN_DB_0; target_atten = ADC_ATTEN_DB_11; print_figure = false; } else { atten = target_atten; print_figure = true; } while (1) { ESP_LOGI("TEST_ADC", "Test with atten: %d", atten); memset(read_buf, 0xce, buffer_size); bool do_calibration = false; esp_adc_cal_characteristics_t chan1_char = {}; esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char); if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) { do_calibration = true; } continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t), atten); adc_digi_start(); int remain_count = TEST_COUNT; while (remain_count) { int already_got = TEST_COUNT - remain_count; uint32_t ret_num; TEST_ESP_OK(adc_digi_read_bytes(read_buf + already_got*output_data_size, remain_count*output_data_size, &ret_num, ADC_MAX_DELAY)); TEST_ASSERT((ret_num % output_data_size) == 0); remain_count -= ret_num / output_data_size; } adc_digi_output_data_t *p = (void*)read_buf; reset_array(); for (int i = 0; i < TEST_COUNT; i++) { insert_point(p[i].type2.data); } print_summary(print_figure); if (do_calibration) { uint32_t raw = get_average(); uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char); printf("Voltage = %d mV\n", voltage_mv); } adc_digi_stop(); TEST_ESP_OK(adc_digi_deinitialize()); if (atten == target_atten) { break; } atten++; } free(read_buf); } TEST_CASE("test_adc_single", "[adc][ignore][manual]") { adc_atten_t target_atten = TEST_ATTEN; adc_atten_t atten; bool print_figure; if (target_atten == ADC_ATTEN_MAX) { atten = ADC_ATTEN_DB_0; target_atten = ADC_ATTEN_DB_11; print_figure = false; } else { atten = target_atten; print_figure = true; } adc1_config_width(ADC_WIDTH_BIT_12); while (1) { ESP_LOGI("TEST_ADC", "Test with atten: %d", atten); adc1_config_channel_atten(ADC1_CHANNEL_2, atten); bool do_calibration = false; esp_adc_cal_characteristics_t chan1_char = {}; esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char); if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) { do_calibration = true; } const int test_count = TEST_COUNT; adc1_channel_t channel = ADC1_CHANNEL_2; while (1) { reset_array(); for (int i = 0; i < test_count; i++) { uint32_t raw = adc1_get_raw(channel); insert_point(raw); } print_summary(print_figure); break; } if (do_calibration) { uint32_t raw = get_average(); uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char); printf("Voltage = %d mV\n", voltage_mv); } if (atten == target_atten) { break; } atten++; } } #endif