/* * SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "sdkconfig.h" #if CONFIG_RMT_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "esp_log.h" #include "esp_check.h" #include "driver/rmt_encoder.h" #include "rmt_private.h" static const char *TAG = "rmt"; typedef struct rmt_bytes_encoder_t { rmt_encoder_t base; // encoder base class size_t last_bit_index; // index of the encoding bit position in the encoding byte size_t last_byte_index; // index of the encoding byte in the primary stream rmt_symbol_word_t bit0; // bit zero representing rmt_symbol_word_t bit1; // bit one representing struct { uint32_t msb_first: 1; // encode MSB firstly } flags; } rmt_bytes_encoder_t; typedef struct rmt_copy_encoder_t { rmt_encoder_t base; // encoder base class size_t last_symbol_index; // index of symbol position in the primary stream } rmt_copy_encoder_t; static esp_err_t rmt_bytes_encoder_reset(rmt_encoder_t *encoder) { rmt_bytes_encoder_t *bytes_encoder = __containerof(encoder, rmt_bytes_encoder_t, base); // reset index to zero bytes_encoder->last_bit_index = 0; bytes_encoder->last_byte_index = 0; return ESP_OK; } __attribute__((always_inline)) static inline uint8_t _bitwise_reverse(uint8_t n) { n = ((n & 0xf0) >> 4) | ((n & 0x0f) << 4); n = ((n & 0xcc) >> 2) | ((n & 0x33) << 2); n = ((n & 0xaa) >> 1) | ((n & 0x55) << 1); return n; } static size_t IRAM_ATTR rmt_encode_bytes(rmt_encoder_t *encoder, rmt_channel_handle_t channel, const void *primary_data, size_t data_size, rmt_encode_state_t *ret_state) { rmt_bytes_encoder_t *bytes_encoder = __containerof(encoder, rmt_bytes_encoder_t, base); rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base); const uint8_t *nd = (const uint8_t *)primary_data; rmt_encode_state_t state = RMT_ENCODING_RESET; dma_descriptor_t *desc0 = NULL; dma_descriptor_t *desc1 = NULL; size_t byte_index = bytes_encoder->last_byte_index; size_t bit_index = bytes_encoder->last_bit_index; // how many symbols will be generated by the encoder size_t mem_want = (data_size - byte_index - 1) * 8 + (8 - bit_index); // how many symbols we can save for this round size_t mem_have = tx_chan->mem_end - tx_chan->mem_off; // where to put the encoded symbols? DMA buffer or RMT HW memory rmt_symbol_word_t *mem_to = channel->dma_chan ? channel->dma_mem_base : channel->hw_mem_base; // how many symbols will be encoded in this round size_t encode_len = MIN(mem_want, mem_have); bool encoding_truncated = mem_have < mem_want; bool encoding_space_free = mem_have > mem_want; if (channel->dma_chan) { // mark the start descriptor if (tx_chan->mem_off < tx_chan->ping_pong_symbols) { desc0 = &tx_chan->dma_nodes[0]; } else { desc0 = &tx_chan->dma_nodes[1]; } } size_t len = encode_len; while (len > 0) { // start from last time truncated encoding uint8_t cur_byte = nd[byte_index]; // bit-wise reverse if (bytes_encoder->flags.msb_first) { cur_byte = _bitwise_reverse(cur_byte); } while ((len > 0) && (bit_index < 8)) { if (cur_byte & (1 << bit_index)) { mem_to[tx_chan->mem_off++] = bytes_encoder->bit1; } else { mem_to[tx_chan->mem_off++] = bytes_encoder->bit0; } len--; bit_index++; } if (bit_index >= 8) { byte_index++; bit_index = 0; } } if (channel->dma_chan) { // mark the end descriptor if (tx_chan->mem_off < tx_chan->ping_pong_symbols) { desc1 = &tx_chan->dma_nodes[0]; } else { desc1 = &tx_chan->dma_nodes[1]; } // cross line, means desc0 has prepared with sufficient data buffer if (desc0 != desc1) { desc0->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t); desc0->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; } } if (encoding_truncated) { // this encoding has not finished yet, save the truncated position bytes_encoder->last_bit_index = bit_index; bytes_encoder->last_byte_index = byte_index; } else { // reset internal index if encoding session has finished bytes_encoder->last_bit_index = 0; bytes_encoder->last_byte_index = 0; state |= RMT_ENCODING_COMPLETE; } if (!encoding_space_free) { // no more free memory, the caller should yield state |= RMT_ENCODING_MEM_FULL; } // reset offset pointer when exceeds maximum range if (tx_chan->mem_off >= tx_chan->ping_pong_symbols * 2) { if (channel->dma_chan) { desc1->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t); desc1->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; } tx_chan->mem_off = 0; } *ret_state = state; return encode_len; } static esp_err_t rmt_copy_encoder_reset(rmt_encoder_t *encoder) { rmt_copy_encoder_t *copy_encoder = __containerof(encoder, rmt_copy_encoder_t, base); copy_encoder->last_symbol_index = 0; return ESP_OK; } static size_t IRAM_ATTR rmt_encode_copy(rmt_encoder_t *encoder, rmt_channel_handle_t channel, const void *primary_data, size_t data_size, rmt_encode_state_t *ret_state) { rmt_copy_encoder_t *copy_encoder = __containerof(encoder, rmt_copy_encoder_t, base); rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base); rmt_symbol_word_t *symbols = (rmt_symbol_word_t *)primary_data; rmt_encode_state_t state = RMT_ENCODING_RESET; dma_descriptor_t *desc0 = NULL; dma_descriptor_t *desc1 = NULL; size_t symbol_index = copy_encoder->last_symbol_index; // how many symbols will be copied by the encoder size_t mem_want = (data_size / 4 - symbol_index); // how many symbols we can save for this round size_t mem_have = tx_chan->mem_end - tx_chan->mem_off; // where to put the encoded symbols? DMA buffer or RMT HW memory rmt_symbol_word_t *mem_to = channel->dma_chan ? channel->dma_mem_base : channel->hw_mem_base; // how many symbols will be encoded in this round size_t encode_len = MIN(mem_want, mem_have); bool encoding_truncated = mem_have < mem_want; bool encoding_space_free = mem_have > mem_want; if (channel->dma_chan) { // mark the start descriptor if (tx_chan->mem_off < tx_chan->ping_pong_symbols) { desc0 = &tx_chan->dma_nodes[0]; } else { desc0 = &tx_chan->dma_nodes[1]; } } size_t len = encode_len; while (len > 0) { mem_to[tx_chan->mem_off++] = symbols[symbol_index++]; len--; } if (channel->dma_chan) { // mark the end descriptor if (tx_chan->mem_off < tx_chan->ping_pong_symbols) { desc1 = &tx_chan->dma_nodes[0]; } else { desc1 = &tx_chan->dma_nodes[1]; } // cross line, means desc0 has prepared with sufficient data buffer if (desc0 != desc1) { desc0->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t); desc0->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; } } if (encoding_truncated) { // this encoding has not finished yet, save the truncated position copy_encoder->last_symbol_index = symbol_index; } else { // reset internal index if encoding session has finished copy_encoder->last_symbol_index = 0; state |= RMT_ENCODING_COMPLETE; } if (!encoding_space_free) { // no more free memory, the caller should yield state |= RMT_ENCODING_MEM_FULL; } // reset offset pointer when exceeds maximum range if (tx_chan->mem_off >= tx_chan->ping_pong_symbols * 2) { if (channel->dma_chan) { desc1->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t); desc1->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; } tx_chan->mem_off = 0; } *ret_state = state; return encode_len; } static esp_err_t rmt_del_bytes_encoder(rmt_encoder_t *encoder) { rmt_bytes_encoder_t *bytes_encoder = __containerof(encoder, rmt_bytes_encoder_t, base); free(bytes_encoder); return ESP_OK; } static esp_err_t rmt_del_copy_encoder(rmt_encoder_t *encoder) { rmt_copy_encoder_t *copy_encoder = __containerof(encoder, rmt_copy_encoder_t, base); free(copy_encoder); return ESP_OK; } esp_err_t rmt_new_bytes_encoder(const rmt_bytes_encoder_config_t *config, rmt_encoder_handle_t *ret_encoder) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); rmt_bytes_encoder_t *encoder = rmt_alloc_encoder_mem(sizeof(rmt_bytes_encoder_t)); ESP_GOTO_ON_FALSE(encoder, ESP_ERR_NO_MEM, err, TAG, "no mem for bytes encoder"); encoder->base.encode = rmt_encode_bytes; encoder->base.del = rmt_del_bytes_encoder; encoder->base.reset = rmt_bytes_encoder_reset; encoder->bit0 = config->bit0; encoder->bit1 = config->bit1; encoder->flags.msb_first = config->flags.msb_first; // return general encoder handle *ret_encoder = &encoder->base; ESP_LOGD(TAG, "new bytes encoder @%p", encoder); err: return ret; } esp_err_t rmt_bytes_encoder_update_config(rmt_encoder_handle_t bytes_encoder, const rmt_bytes_encoder_config_t *config) { ESP_RETURN_ON_FALSE(bytes_encoder && config, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); rmt_bytes_encoder_t *encoder = __containerof(bytes_encoder, rmt_bytes_encoder_t, base); encoder->bit0 = config->bit0; encoder->bit1 = config->bit1; encoder->flags.msb_first = config->flags.msb_first; return ESP_OK; } esp_err_t rmt_new_copy_encoder(const rmt_copy_encoder_config_t *config, rmt_encoder_handle_t *ret_encoder) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); rmt_copy_encoder_t *encoder = rmt_alloc_encoder_mem(sizeof(rmt_copy_encoder_t)); ESP_GOTO_ON_FALSE(encoder, ESP_ERR_NO_MEM, err, TAG, "no mem for copy encoder"); encoder->base.encode = rmt_encode_copy; encoder->base.del = rmt_del_copy_encoder; encoder->base.reset = rmt_copy_encoder_reset; // return general encoder handle *ret_encoder = &encoder->base; ESP_LOGD(TAG, "new copy encoder @%p", encoder); err: return ret; } esp_err_t rmt_del_encoder(rmt_encoder_handle_t encoder) { ESP_RETURN_ON_FALSE(encoder, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); return encoder->del(encoder); } esp_err_t rmt_encoder_reset(rmt_encoder_handle_t encoder) { ESP_RETURN_ON_FALSE(encoder, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); return encoder->reset(encoder); } void* rmt_alloc_encoder_mem(size_t size) { return heap_caps_calloc(1, size, RMT_MEM_ALLOC_CAPS); }