/* * SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "sdkconfig.h" #include "string.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_types.h" #include "esp_log.h" #include "soc/spi_mem_reg.h" #include "spi_timing_config.h" #include "esp_private/spi_flash_os.h" #include "spi_flash_override.h" #define OPI_PSRAM_SYNC_READ 0x0000 #define OPI_PSRAM_SYNC_WRITE 0x8080 #define OCT_PSRAM_RD_DUMMY_NUM (2*(10-1)) #define OCT_PSRAM_WR_DUMMY_NUM (2*(5-1)) #define QPI_PSRAM_FAST_READ 0XEB #define QPI_PSRAM_WRITE 0X38 #define QPI_PSRAM_FAST_READ_DUMMY 6 #define MULTI_LINE_MASK_OCT_FLASH (SPI_MEM_FCMD_OCT | SPI_MEM_FADDR_OCT | SPI_MEM_FDIN_OCT | SPI_MEM_FDOUT_OCT) #define MULTI_LINE_MASK_QUAD_FLASH (SPI_MEM_FASTRD_MODE | SPI_MEM_FREAD_DUAL | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_QIO) #define SPI_FLASH_QIO_MODE (SPI_MEM_FREAD_QIO | SPI_MEM_FASTRD_MODE) #define SPI_FLASH_QUAD_MODE (SPI_MEM_FREAD_QUAD | SPI_MEM_FASTRD_MODE) #define SPI_FLASH_DIO_MODE (SPI_MEM_FREAD_DIO | SPI_MEM_FASTRD_MODE) #define SPI_FLASH_DUAL_MODE (SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE) #define SPI_FLASH_FAST_MODE (SPI_MEM_FASTRD_MODE) #define SPI_FLASH_SLOW_MODE 0 #define NOT_INIT_INT 127 //-------------------------------------MSPI Clock Setting-------------------------------------// spi_timing_config_core_clock_t spi_timing_config_get_core_clock(void) { switch (SPI_TIMING_CORE_CLOCK_MHZ) { case 80: return SPI_TIMING_CONFIG_CORE_CLOCK_80M; case 120: return SPI_TIMING_CONFIG_CORE_CLOCK_120M; case 160: return SPI_TIMING_CONFIG_CORE_CLOCK_160M; case 240: return SPI_TIMING_CONFIG_CORE_CLOCK_240M; default: abort(); } } void spi_timing_config_set_core_clock(uint8_t spi_num, spi_timing_config_core_clock_t core_clock) { uint32_t reg_val = 0; switch (core_clock) { case SPI_TIMING_CONFIG_CORE_CLOCK_80M: reg_val = 0; break; case SPI_TIMING_CONFIG_CORE_CLOCK_120M: reg_val = 1; break; case SPI_TIMING_CONFIG_CORE_CLOCK_160M: reg_val = 2; break; case SPI_TIMING_CONFIG_CORE_CLOCK_240M: reg_val = 3; break; default: abort(); } REG_SET_FIELD(SPI_MEM_CORE_CLK_SEL_REG(spi_num), SPI_MEM_CORE_CLK_SEL, reg_val); } void spi_timing_config_set_flash_clock(uint8_t spi_num, uint32_t freqdiv) { assert(freqdiv > 0); if (freqdiv == 1) { WRITE_PERI_REG(SPI_MEM_CLOCK_REG(spi_num), SPI_MEM_CLK_EQU_SYSCLK); } else { uint32_t freqbits = (((freqdiv - 1) << SPI_MEM_CLKCNT_N_S)) | (((freqdiv / 2 - 1) << SPI_MEM_CLKCNT_H_S)) | ((freqdiv - 1) << SPI_MEM_CLKCNT_L_S); WRITE_PERI_REG(SPI_MEM_CLOCK_REG(spi_num), freqbits); } } void spi_timing_config_set_psram_clock(uint8_t spi_num, uint32_t freqdiv) { if (freqdiv == 1) { WRITE_PERI_REG(SPI_MEM_SRAM_CLK_REG(spi_num), SPI_MEM_SCLK_EQU_SYSCLK); } else { uint32_t freqbits = (((freqdiv-1)<qio_dummy - 1; case SPI_FLASH_QUAD_MODE: return hpm_dummy->qout_dummy - 1; case SPI_FLASH_DIO_MODE: return hpm_dummy->dio_dummy - 1; case SPI_FLASH_DUAL_MODE: return hpm_dummy->dout_dummy - 1; case SPI_FLASH_FAST_MODE: return hpm_dummy->fastrd_dummy - 1; case SPI_FLASH_SLOW_MODE: return 0; default: abort(); } } else #endif { // HPM is not enabled switch (ctrl_reg & MULTI_LINE_MASK_QUAD_FLASH) { case SPI_FLASH_QIO_MODE: return SPI1_R_QIO_DUMMY_CYCLELEN; case SPI_FLASH_QUAD_MODE: return SPI1_R_FAST_DUMMY_CYCLELEN; case SPI_FLASH_DIO_MODE: return SPI1_R_DIO_DUMMY_CYCLELEN; case SPI_FLASH_DUAL_MODE: return SPI1_R_FAST_DUMMY_CYCLELEN; case SPI_FLASH_FAST_MODE: return SPI1_R_FAST_DUMMY_CYCLELEN; case SPI_FLASH_SLOW_MODE: return 0; default: abort(); } } } #endif void spi_timing_config_flash_set_extra_dummy(uint8_t spi_num, uint8_t extra_dummy) { #if CONFIG_ESPTOOLPY_OCT_FLASH if (extra_dummy > 0) { SET_PERI_REG_MASK(SPI_MEM_TIMING_CALI_REG(spi_num), SPI_MEM_TIMING_CALI_M); SET_PERI_REG_BITS(SPI_MEM_TIMING_CALI_REG(spi_num), SPI_MEM_EXTRA_DUMMY_CYCLELEN_V, extra_dummy, SPI_MEM_EXTRA_DUMMY_CYCLELEN_S); } else { CLEAR_PERI_REG_MASK(SPI_MEM_TIMING_CALI_REG(spi_num), SPI_MEM_TIMING_CALI_M); SET_PERI_REG_BITS(SPI_MEM_TIMING_CALI_REG(spi_num), SPI_MEM_EXTRA_DUMMY_CYCLELEN_V, 0, SPI_MEM_EXTRA_DUMMY_CYCLELEN_S); } #else /** * The `SPI_MEM_TIMING_CALI_REG` register is only used for OPI on 728 * Here we only need to update this global variable for extra dummy. Since we use the ROM Flash API, which will set the dummy based on this. * We only initialise the SPI0. And leave the SPI1 for flash driver to configure. */ if (s_rom_flash_extra_dummy[spi_num] == NOT_INIT_INT) { s_rom_flash_extra_dummy[spi_num] = g_rom_spiflash_dummy_len_plus[spi_num]; } g_rom_spiflash_dummy_len_plus[spi_num] = s_rom_flash_extra_dummy[spi_num] + extra_dummy; uint32_t dummy = spi_timing_config_get_dummy(); SET_PERI_REG_BITS(SPI_MEM_USER1_REG(0), SPI_MEM_USR_DUMMY_CYCLELEN_V, dummy + g_rom_spiflash_dummy_len_plus[spi_num], SPI_MEM_USR_DUMMY_CYCLELEN_S); #endif } //-------------------------------------PSRAM timing tuning register config-------------------------------------// void spi_timing_config_psram_set_din_mode_num(uint8_t spi_num, uint8_t din_mode, uint8_t din_num) { uint32_t reg_val = 0; reg_val = (REG_READ(SPI_MEM_SPI_SMEM_DIN_MODE_REG(spi_num)) & (~(SPI_MEM_SPI_SMEM_DIN0_MODE_M | SPI_MEM_SPI_SMEM_DIN1_MODE_M | SPI_MEM_SPI_SMEM_DIN2_MODE_M | SPI_MEM_SPI_SMEM_DIN3_MODE_M | SPI_MEM_SPI_SMEM_DIN4_MODE_M | SPI_MEM_SPI_SMEM_DIN5_MODE_M | SPI_MEM_SPI_SMEM_DIN6_MODE_M | SPI_MEM_SPI_SMEM_DIN7_MODE_M | SPI_MEM_SPI_SMEM_DINS_MODE_M))) | (din_mode << SPI_MEM_SPI_SMEM_DIN0_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN1_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN2_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN3_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN4_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN5_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN6_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DIN7_MODE_S) | (din_mode << SPI_MEM_SPI_SMEM_DINS_MODE_S); REG_WRITE(SPI_MEM_SPI_SMEM_DIN_MODE_REG(spi_num), reg_val); reg_val = (REG_READ(SPI_MEM_SPI_SMEM_DIN_NUM_REG(spi_num)) & (~(SPI_MEM_SPI_SMEM_DIN0_NUM_M | SPI_MEM_SPI_SMEM_DIN1_NUM_M | SPI_MEM_SPI_SMEM_DIN2_NUM_M | SPI_MEM_SPI_SMEM_DIN3_NUM_M | SPI_MEM_SPI_SMEM_DIN4_NUM_M | SPI_MEM_SPI_SMEM_DIN5_NUM_M | SPI_MEM_SPI_SMEM_DIN6_NUM_M | SPI_MEM_SPI_SMEM_DIN7_NUM_M | SPI_MEM_SPI_SMEM_DINS_NUM_M))) | (din_num << SPI_MEM_SPI_SMEM_DIN0_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN1_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN2_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN3_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN4_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN5_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN6_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DIN7_NUM_S) | (din_num << SPI_MEM_SPI_SMEM_DINS_NUM_S); REG_WRITE(SPI_MEM_SPI_SMEM_DIN_NUM_REG(spi_num), reg_val); } void spi_timing_config_psram_set_extra_dummy(uint8_t spi_num, uint8_t extra_dummy) { #if CONFIG_SPIRAM_MODE_OCT if (extra_dummy > 0) { SET_PERI_REG_MASK(SPI_MEM_SPI_SMEM_TIMING_CALI_REG(spi_num), SPI_MEM_SPI_SMEM_TIMING_CALI_M); SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_TIMING_CALI_REG(spi_num), SPI_MEM_SPI_SMEM_EXTRA_DUMMY_CYCLELEN_V, extra_dummy, SPI_MEM_SPI_SMEM_EXTRA_DUMMY_CYCLELEN_S); } else { CLEAR_PERI_REG_MASK(SPI_MEM_SPI_SMEM_TIMING_CALI_REG(spi_num), SPI_MEM_SPI_SMEM_TIMING_CALI_M); SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_TIMING_CALI_REG(spi_num), SPI_MEM_SPI_SMEM_EXTRA_DUMMY_CYCLELEN_V, 0, SPI_MEM_SPI_SMEM_EXTRA_DUMMY_CYCLELEN_S); } #elif CONFIG_SPIRAM_MODE_QUAD SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(spi_num), SPI_MEM_USR_RD_SRAM_DUMMY_M); SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(spi_num), SPI_MEM_SRAM_RDUMMY_CYCLELEN_V, (QPI_PSRAM_FAST_READ_DUMMY + extra_dummy - 1), SPI_MEM_SRAM_RDUMMY_CYCLELEN_S); #endif } //-------------------------------------------FLASH/PSRAM Read/Write------------------------------------------// void spi_timing_config_flash_read_data(uint8_t spi_num, uint8_t *buf, uint32_t addr, uint32_t len) { #if CONFIG_ESPTOOLPY_OCT_FLASH // note that in spi_flash_read API, there is a wait-idle stage, since flash can only be read in idle state. // but after we change the timing settings, we might not read correct idle status via RDSR. // so, here we should use a read API that won't check idle status. for (int i = 0; i < 16; i++) { REG_WRITE(SPI_MEM_W0_REG(1) + i*4, 0); } esp_rom_opiflash_read_raw(addr, buf, len); #else esp_rom_spiflash_read(addr, (uint32_t *)buf, len); #endif } static void s_psram_write_data(uint8_t spi_num, uint8_t *buf, uint32_t addr, uint32_t len) { #if CONFIG_SPIRAM_MODE_OCT esp_rom_opiflash_exec_cmd(spi_num, ESP_ROM_SPIFLASH_OPI_DTR_MODE, OPI_PSRAM_SYNC_WRITE, 16, addr, 32, OCT_PSRAM_WR_DUMMY_NUM, buf, len * 8, NULL, 0, BIT(1), false); #elif CONFIG_SPIRAM_MODE_QUAD psram_exec_cmd(spi_num, 0, QPI_PSRAM_WRITE, 8, addr, 24, 0, buf, len * 8, NULL, 0, SPI_MEM_CS1_DIS_M, false); #endif } static void s_psram_read_data(uint8_t spi_num, uint8_t *buf, uint32_t addr, uint32_t len) { #if CONFIG_SPIRAM_MODE_OCT for (int i = 0; i < 16; i++) { REG_WRITE(SPI_MEM_W0_REG(1) + i*4, 0); } esp_rom_opiflash_exec_cmd(spi_num, ESP_ROM_SPIFLASH_OPI_DTR_MODE, OPI_PSRAM_SYNC_READ, 16, addr, 32, OCT_PSRAM_RD_DUMMY_NUM, NULL, 0, buf, len * 8, BIT(1), false); #elif CONFIG_SPIRAM_MODE_QUAD psram_exec_cmd(spi_num, 0, QPI_PSRAM_FAST_READ, 8, addr, 24, QPI_PSRAM_FAST_READ_DUMMY + s_psram_extra_dummy, NULL, 0, buf, len * 8, SPI_MEM_CS1_DIS_M, false); #endif } static void s_psram_execution(uint8_t spi_num, uint8_t *buf, uint32_t addr, uint32_t len, bool is_read) { while (len) { uint32_t length = MIN(len, 32); if (is_read) { s_psram_read_data(1, buf, addr, length); } else { s_psram_write_data(1, buf, addr, length); } addr += length; buf += length; len -= length; } } void spi_timing_config_psram_write_data(uint8_t spi_num, uint8_t *buf, uint32_t addr, uint32_t len) { s_psram_execution(spi_num, buf, addr, len, false); } void spi_timing_config_psram_read_data(uint8_t spi_num, uint8_t *buf, uint32_t addr, uint32_t len) { s_psram_execution(spi_num, buf, addr, len, true); } /*------------------------------------------------------------------------------------------------- * SPI1 Timing Tuning APIs * These APIs are only used in `spi_flash_timing_tuning.c/sweep_for_success_sample_points()` for * configuring SPI1 timing tuning related registers to find best tuning parameter *-------------------------------------------------------------------------------------------------*/ void spi_timing_config_flash_tune_din_num_mode(uint8_t din_mode, uint8_t din_num) { /** * 1. SPI_MEM_DINx_MODE(1), SPI_MEM_DINx_NUM(1) are meaningless * SPI0 and SPI1 share the SPI_MEM_DINx_MODE(0), SPI_MEM_DINx_NUM(0) for FLASH timing tuning * 2. We use SPI1 to get the best Flash timing tuning (mode and num) config */ spi_timing_config_flash_set_din_mode_num(0, din_mode, din_num); } void spi_timing_config_flash_tune_dummy(uint8_t extra_dummy) { spi_timing_config_flash_set_extra_dummy(1, extra_dummy); } void spi_timing_config_psram_tune_din_num_mode(uint8_t din_mode, uint8_t din_num) { /** * 1. SPI_MEM_SPI_SMEM_DINx_MODE(1), SPI_MEM_SPI_SMEM_DINx_NUM(1) are meaningless * SPI0 and SPI1 share the SPI_MEM_SPI_SMEM_DINx_MODE(0), SPI_MEM_SPI_SMEM_DINx_NUM(0) for PSRAM timing tuning * 2. We use SPI1 to get the best PSRAM timing tuning (mode and num) config */ spi_timing_config_psram_set_din_mode_num(0, din_mode, din_num); } void spi_timing_config_psram_tune_dummy(uint8_t extra_dummy) { #if CONFIG_SPIRAM_MODE_OCT //On 728, for SPI1, flash and psram share the extra dummy register spi_timing_config_flash_set_extra_dummy(1, extra_dummy); #elif CONFIG_SPIRAM_MODE_QUAD //Update this `s_psram_extra_dummy`, the `s_psram_read_data` will set dummy according to this `s_psram_extra_dummy` s_psram_extra_dummy = extra_dummy; SET_PERI_REG_MASK(SPI_MEM_USER_REG(1), SPI_MEM_USR_DUMMY); // dummy en SET_PERI_REG_BITS(SPI_MEM_USER1_REG(1), SPI_MEM_USR_DUMMY_CYCLELEN_V, extra_dummy - 1, SPI_MEM_USR_DUMMY_CYCLELEN_S); #endif } #endif //#if SPI_TIMING_FLASH_NEEDS_TUNING || SPI_TIMING_PSRAM_NEEDS_TUNING /*------------------------------------------------------------------------------------------------- * To let upper lay (spi_flash_timing_tuning.c) to know the necessary timing registers *-------------------------------------------------------------------------------------------------*/ static bool s_get_cs_setup_enable(void) { return REG_GET_BIT(SPI_MEM_USER_REG(0), SPI_MEM_CS_SETUP); } static bool s_get_cs_hold_enable(void) { return REG_GET_BIT(SPI_MEM_USER_REG(0), SPI_MEM_CS_HOLD); } /** * Get the SPI1 Flash CS timing setting. The setup time and hold time are both realistic cycles. * @note On ESP32-S3, SPI0/1 share the Flash CS timing registers. Therefore, we should not change these values. * @note This function inform `spi_flash_timing_tuning.c` (driver layer) of the cycle, * and other component (esp_flash driver) should get these cycle and configure the registers accordingly. */ void spi_timing_config_get_cs_timing(uint8_t *setup_time, uint32_t *hold_time) { *setup_time = REG_GET_FIELD(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_SETUP_TIME); *hold_time = REG_GET_FIELD(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_HOLD_TIME); /** * The logic here is, if setup_en / hold_en is false, then we return the realistic cycle number, * which is 0. If true, then the realistic cycle number is (reg_value + 1) */ if (s_get_cs_setup_enable()) { *setup_time += 1; } else { *setup_time = 0; } if (s_get_cs_hold_enable()) { *hold_time += 1; } else { *hold_time = 0; } } /** * Get the SPI1 Flash clock setting. * @note Similarly, this function inform `spi_flash_timing_tuning.c` (driver layer) of the clock setting, * and other component (esp_flash driver) should get these and configure the registers accordingly. */ uint32_t spi_timing_config_get_flash_clock_reg(void) { return READ_PERI_REG(SPI_MEM_CLOCK_REG(1)); }