#pragma once #include #include "soc/adc_periph.h" #include "hal/adc_types.h" #include "soc/apb_saradc_struct.h" #include "soc/apb_saradc_reg.h" #include "soc/rtc_cntl_struct.h" #include "soc/rtc_cntl_reg.h" #include "i2c_rtc_clk.h" #ifdef __cplusplus extern "C" { #endif typedef enum { ADC_NUM_1 = 0, /*!< SAR ADC 1 */ ADC_NUM_2 = 1, /*!< SAR ADC 2 */ ADC_NUM_MAX, } adc_ll_num_t; typedef enum { ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */ ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */ ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */ ADC_POWER_MAX, /*!< For parameter check. */ } adc_ll_power_t; typedef enum { ADC_RTC_DATA_OK = 0, ADC_RTC_CTRL_UNSELECTED = 1, ADC_RTC_CTRL_BREAK = 2, ADC_RTC_DATA_FAIL = -1, } adc_ll_rtc_raw_data_t; /** * @brief Analyze whether the obtained raw data is correct. * ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data. * */ typedef struct { union { struct { uint16_t data: 13; /*! 0), The data is invalid. */ }; uint16_t val; }; } adc_rtc_output_data_t; /** * @brief ADC controller type selection. * * @note For ADC2, use the force option with care. The system power consumption detection will use ADC2. * If it is forced to switch to another controller, it may cause the system to obtain incorrect values. * @note Normally, there is no need to switch the controller manually. */ typedef enum { ADC_CTRL_RTC = 0, /*!> offset)); // clear old data tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data APB_SARADC.sar1_patt_tab[index] = tab; // Write back } else { // adc_n == ADC_NUM_2 tab = APB_SARADC.sar2_patt_tab[index]; // Read old register value tab &= (~(0xFF000000 >> offset)); // clear old data tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data APB_SARADC.sar2_patt_tab[index] = tab; // Write back } } /** * Reset the pattern table pointer, then take the measurement rule from table header in next measurement. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { APB_SARADC.ctrl.sar1_patt_p_clear = 1; APB_SARADC.ctrl.sar1_patt_p_clear = 0; } else { // adc_n == ADC_NUM_2 APB_SARADC.ctrl.sar2_patt_p_clear = 1; APB_SARADC.ctrl.sar2_patt_p_clear = 0; } } /** * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize. * * @note Only ADC2 have arbiter function. * @param cycle range: 0 ~ 4. */ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle) { APB_SARADC.ctrl.wait_arb_cycle = cycle; } /** * ADC Digital controller output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en) { if (adc_n == ADC_NUM_1) { APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert } else { // adc_n == ADC_NUM_2 APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert } } /** * Sets the number of interval clock cycles for the digital controller to trigger the measurement. * Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``. * * @note The trigger interval should not be less than the sampling time of the SAR ADC. * @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095. */ static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle) { APB_SARADC.ctrl2.timer_target = cycle; } /** * Enable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_enable(void) { APB_SARADC.ctrl2.timer_sel = 1; APB_SARADC.ctrl2.timer_en = 1; } /** * Disable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_disable(void) { APB_SARADC.ctrl2.timer_en = 0; APB_SARADC.ctrl2.timer_sel = 0; } /** * Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock. * Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1). * * @param div_num Division factor. Range: 0 ~ 255. * @param div_b Division factor. Range: 1 ~ 63. * @param div_a Division factor. Range: 0 ~ 63. */ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a) { APB_SARADC.apb_adc_clkm_conf.clkm_div_num = div_num; APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b; APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a; } /** * Enable clock and select clock source for ADC digital controller. * * @param use_apll true: use APLL clock; false: use APB clock. */ static inline void adc_ll_digi_controller_clk_enable(bool use_apll) { if (use_apll) { APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock } else { APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock } APB_SARADC.ctrl.sar_clk_gated = 1; } /** * Disable clock for ADC digital controller. */ static inline void adc_ll_digi_controller_clk_disable(void) { APB_SARADC.ctrl.sar_clk_gated = 0; APB_SARADC.apb_adc_clkm_conf.clk_sel = 0; } /** * Reset adc digital controller filter. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { APB_SARADC.filter_ctrl.adc1_filter_reset = 1; APB_SARADC.filter_ctrl.adc1_filter_reset = 0; } else { // adc_n == ADC_NUM_2 APB_SARADC.filter_ctrl.adc2_filter_reset = 1; APB_SARADC.filter_ctrl.adc2_filter_reset = 0; } } /** * Set adc digital controller filter factor. * * @param adc_n ADC unit. * @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64). */ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t factor) { int mode = 0; switch (factor) { case ADC_DIGI_FILTER_IIR_2: mode = 2; break; case ADC_DIGI_FILTER_IIR_4: mode = 4; break; case ADC_DIGI_FILTER_IIR_8: mode = 8; break; case ADC_DIGI_FILTER_IIR_16: mode = 16; break; case ADC_DIGI_FILTER_IIR_64: mode = 64; break; default: mode = 8; break; } if (adc_n == ADC_NUM_1) { APB_SARADC.filter_ctrl.adc1_filter_factor = mode; } else { // adc_n == ADC_NUM_2 APB_SARADC.filter_ctrl.adc2_filter_factor = mode; } } /** * Get adc digital controller filter factor. * * @param adc_n ADC unit. * @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64). */ static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor) { int mode = 0; if (adc_n == ADC_NUM_1) { mode = APB_SARADC.filter_ctrl.adc1_filter_factor; } else { // adc_n == ADC_NUM_2 mode = APB_SARADC.filter_ctrl.adc2_filter_factor; } switch (mode) { case 2: *factor = ADC_DIGI_FILTER_IIR_2; break; case 4: *factor = ADC_DIGI_FILTER_IIR_4; break; case 8: *factor = ADC_DIGI_FILTER_IIR_8; break; case 16: *factor = ADC_DIGI_FILTER_IIR_16; break; case 64: *factor = ADC_DIGI_FILTER_IIR_64; break; default: *factor = ADC_DIGI_FILTER_IIR_MAX; break; } } /** * Enable/disable adc digital controller filter. * Filtering the ADC data to obtain smooth data at higher sampling rates. * * @note The filter will filter all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable) { if (adc_n == ADC_NUM_1) { APB_SARADC.filter_ctrl.adc1_filter_en = enable; } else { // adc_n == ADC_NUM_2 APB_SARADC.filter_ctrl.adc2_filter_en = enable; } } /** * Get the filtered data of adc digital controller filter. * The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API. * * @note The filter will filter all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @return Filtered data. */ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { return APB_SARADC.filter_status.adc1_filter_data; } else { // adc_n == ADC_NUM_2 return APB_SARADC.filter_status.adc2_filter_data; } } /** * Set monitor mode of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt. * false: If ADC_OUT < threshold, Generates monitor interrupt. */ static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger) { if (adc_n == ADC_NUM_1) { APB_SARADC.thres_ctrl.adc1_thres_mode = is_larger; } else { // adc_n == ADC_NUM_2 APB_SARADC.thres_ctrl.adc2_thres_mode = is_larger; } } /** * Set monitor threshold of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @param threshold Monitor threshold. */ static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold) { if (adc_n == ADC_NUM_1) { APB_SARADC.thres_ctrl.adc1_thres = threshold; } else { // adc_n == ADC_NUM_2 APB_SARADC.thres_ctrl.adc2_thres = threshold; } } /** * Enable/disable monitor of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. */ static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable) { if (adc_n == ADC_NUM_1) { APB_SARADC.thres_ctrl.adc1_thres_en = enable; } else { // adc_n == ADC_NUM_2 APB_SARADC.thres_ctrl.adc2_thres_en = enable; } } /** * Enable interrupt of adc digital controller by bitmask. * * @param adc_n ADC unit. * @param intr Interrupt bitmask. */ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr) { if (adc_n == ADC_NUM_1) { if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc1_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc1_done = 1; } } else { // adc_n == ADC_NUM_2 if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc2_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc2_done = 1; } } } /** * Disable interrupt of adc digital controller by bitmask. * * @param adc_n ADC unit. * @param intr Interrupt bitmask. */ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr) { if (adc_n == ADC_NUM_1) { if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc1_thres = 0; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc1_done = 0; } } else { // adc_n == ADC_NUM_2 if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc2_thres = 0; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc2_done = 0; } } } /** * Clear interrupt of adc digital controller by bitmask. * * @param adc_n ADC unit. * @param intr Interrupt bitmask. */ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr) { if (adc_n == ADC_NUM_1) { if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_clr.adc1_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_clr.adc1_done = 1; } } else { // adc_n == ADC_NUM_2 if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_clr.adc2_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_clr.adc2_done = 1; } } } /** * Get interrupt status mask of adc digital controller. * * @param adc_n ADC unit. * @return * - intr Interrupt bitmask. */ static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n) { uint32_t int_st = APB_SARADC.int_st.val; uint32_t ret_msk = 0; if (adc_n == ADC_NUM_1) { if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) { ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE; } if (int_st & APB_SARADC_ADC1_THRES_INT_ST) { ret_msk |= ADC_DIGI_INTR_MASK_MONITOR; } } else { // adc_n == ADC_NUM_2 if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) { ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE; } if (int_st & APB_SARADC_ADC2_THRES_INT_ST_M) { ret_msk |= ADC_DIGI_INTR_MASK_MONITOR; } } return ret_msk; } /** * Set DMA eof num of adc digital controller. * If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated. * * @param num eof num of DMA. */ static inline void adc_ll_digi_dma_set_eof_num(uint32_t num) { APB_SARADC.dma_conf.apb_adc_eof_num = num; } /** * Enable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_enable(void) { APB_SARADC.dma_conf.apb_adc_trans = 1; } /** * Disable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_disable(void) { APB_SARADC.dma_conf.apb_adc_trans = 0; } /** * Reset adc digital controller. */ static inline void adc_ll_digi_reset(void) { APB_SARADC.dma_conf.apb_adc_reset_fsm = 1; APB_SARADC.dma_conf.apb_adc_reset_fsm = 0; } /*--------------------------------------------------------------- PWDET(Power detect) controller setting ---------------------------------------------------------------*/ /** * Set adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @param cct Range: 0 ~ 7. */ static inline void adc_ll_pwdet_set_cct(uint32_t cct) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ SENS.sar_meas2_mux.sar2_pwdet_cct = cct; } /** * Get adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @return cct Range: 0 ~ 7. */ static inline uint32_t adc_ll_pwdet_get_cct(void) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ return SENS.sar_meas2_mux.sar2_pwdet_cct; } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ /** * Set adc output data format for RTC controller. * * @note ESP32S2 RTC controller only support 13bit. * @prarm adc_n ADC unit. * @prarm bits Output data bits width option. */ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits) { return; } /** * Enable adc channel to start convert. * * @note Only one channel can be selected for once measurement. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel) { if (adc_n == ADC_NUM_1) { SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected. } else { // adc_n == ADC_NUM_2 SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected. } } /** * Disable adc channel to start convert. * * @note Only one channel can be selected in once measurement. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel) { if (adc_n == ADC_NUM_1) { SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected. } else { // adc_n == ADC_NUM_2 SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected. } } /** * Start conversion once by software for RTC controller. * * @note It may be block to wait conversion idle for ADC1. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel) { if (adc_n == ADC_NUM_1) { while (SENS.sar_slave_addr1.meas_status != 0); SENS.sar_meas1_ctrl2.meas1_start_sar = 0; SENS.sar_meas1_ctrl2.meas1_start_sar = 1; } else { // adc_n == ADC_NUM_2 SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0 SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1 } } /** * Check the conversion done flag for each ADCn for RTC controller. * * @param adc_n ADC unit. * @return * -true : The conversion process is finish. * -false : The conversion process is not finish. */ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n) { bool ret = true; if (adc_n == ADC_NUM_1) { ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar; } else { // adc_n == ADC_NUM_2 ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar; } return ret; } /** * Get the converted value for each ADCn for RTC controller. * * @param adc_n ADC unit. * @return * - Converted value. */ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n) { int ret_val = 0; if (adc_n == ADC_NUM_1) { ret_val = SENS.sar_meas1_ctrl2.meas1_data_sar; } else { // adc_n == ADC_NUM_2 ret_val = SENS.sar_meas2_ctrl2.meas2_data_sar; } return ret_val; } /** * ADC module RTC output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert } } /** * Enable ADCn conversion complete interrupt for RTC controller. * * @param adc_n ADC unit. */ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_int_en = 1; RTCCNTL.int_ena.rtc_saradc1 = 1; } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_int_en = 1; RTCCNTL.int_ena.rtc_saradc2 = 1; } } /** * Disable ADCn conversion complete interrupt for RTC controller. * * @param adc_n ADC unit. */ static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_int_en = 0; RTCCNTL.int_ena.rtc_saradc1 = 0; } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_int_en = 0; RTCCNTL.int_ena.rtc_saradc2 = 0; } } /** * Reset RTC controller FSM. */ static inline void adc_ll_rtc_reset(void) { SENS.sar_meas1_ctrl1.rtc_saradc_reset = 1; SENS.sar_meas1_ctrl1.rtc_saradc_reset = 0; } /** * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize. * * @note Only ADC2 have arbiter function. * @param cycle range: [0,4]. */ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle) { SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle; } /** * Analyze whether the obtained raw data is correct. * ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data. * * @param adc_n ADC unit. * @param raw_data ADC raw data input (convert value). * @return * - 0: The data is correct to use. * - 1: The data is invalid. The current controller is not enabled by the arbiter. * - 2: The data is invalid. The current controller process was interrupted by a higher priority controller. * - -1: The data is error. */ static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data) { /* ADC1 don't need check data */ if (adc_n == ADC_NUM_1) { return ADC_RTC_DATA_OK; } adc_rtc_output_data_t *temp = (adc_rtc_output_data_t *)&raw_data; if (temp->flag == 0) { return ADC_RTC_DATA_OK; } else if (temp->flag == 1) { return ADC_RTC_CTRL_UNSELECTED; } else if (temp->flag == 2) { return ADC_RTC_CTRL_BREAK; } else { return ADC_RTC_DATA_FAIL; } } /*--------------------------------------------------------------- Common setting ---------------------------------------------------------------*/ /** * Set ADC module power management. * * @param manage Set ADC power status. */ static inline void adc_ll_set_power_manage(adc_ll_power_t manage) { /* Bit1 0:Fsm 1: SW mode Bit0 0:SW mode power down 1: SW mode power on */ if (manage == ADC_POWER_SW_ON) { SENS.sar_meas1_ctrl1.rtc_saradc_clkgate_en = 1; SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PU; } else if (manage == ADC_POWER_BY_FSM) { SENS.sar_meas1_ctrl1.rtc_saradc_clkgate_en = 1; SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_FSM; } else if (manage == ADC_POWER_SW_OFF) { SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PD; SENS.sar_meas1_ctrl1.rtc_saradc_clkgate_en = 0; } } /** * Get ADC module power management. * * @return * - ADC power status. */ static inline adc_ll_power_t adc_ll_get_power_manage(void) { /* Bit1 0:Fsm 1: SW mode Bit0 0:SW mode power down 1: SW mode power on */ adc_ll_power_t manage; if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PU) { manage = ADC_POWER_SW_ON; } else if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PD) { manage = ADC_POWER_SW_OFF; } else { manage = ADC_POWER_BY_FSM; } return manage; } /** * ADC SAR clock division factor setting. ADC SAR clock devided from `RTC_FAST_CLK`. * * @param div Division factor. */ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_clk_div = div; } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_clk_div = div; } } /** * Set the attenuation of a particular channel on ADCn. * * @note For any given channel, this function must be called before the first time conversion. * * The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage, * usually 3.3V) requires setting >0dB signal attenuation for that ADC channel. * * When VDD_A is 3.3V: * * - 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V * - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V * - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V * - 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below) * * @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured * bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.) * * @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage. * * Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges: * * - 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV * - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV * - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV * - 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV * * For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges. * * @param adc_n ADC unit. * @param channel ADCn channel number. * @param atten The attenuation option. */ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { if (adc_n == ADC_NUM_1) { SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2)); } else { // adc_n == ADC_NUM_2 SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2)); } } /** * Get the attenuation of a particular channel on ADCn. * * @param adc_n ADC unit. * @param channel ADCn channel number. * @return atten The attenuation option. */ static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel) { if (adc_n == ADC_NUM_1) { return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3); } else { return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3); } } /** * Set ADC module controller. * There are five SAR ADC controllers: * Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes; * Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep; * the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2. * * @param adc_n ADC unit. * @param ctrl ADC controller. */ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_controller_t ctrl) { if (adc_n == ADC_NUM_1) { switch ( ctrl ) { case ADC_CTRL_RTC: SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control. SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_CTRL_ULP: SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control. SENS.sar_meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_CTRL_DIG: SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control. SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; default: break; } } else { // adc_n == ADC_NUM_2 switch ( ctrl ) { case ADC_CTRL_RTC: SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_CTRL_ULP: SENS.sar_meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_CTRL_DIG: SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC2_CTRL_PWDET: // currently only used by Wi-Fi SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; default: break; } } } /** * Set ADC2 module arbiter work mode. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * * @param mode Refer to ``adc_arbiter_mode_t``. */ static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode) { SENS.sar_meas2_mux.sar2_rtc_force = 0; // Enable arbiter in wakeup mode if (mode == ADC_ARB_MODE_FIX) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1; } else if (mode == ADC_ARB_MODE_LOOP) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter. } } /** * Set ADC2 module controller priority in arbiter. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0); * * @param pri_rtc RTC controller priority. Range: 0 ~ 2. * @param pri_dig Digital controller priority. Range: 0 ~ 2. * @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2. */ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet) { if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc; APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet; } /* Should select highest priority controller. */ if (pri_rtc > pri_dig) { if (pri_rtc > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } else { if (pri_dig > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } } /** * Force switch ADC2 to RTC controller in sleep mode. Shield arbiter. * In sleep mode, the arbiter is in power-down mode. * Need to switch the controller to RTC to shield the control of the arbiter. * After waking up, it needs to switch to arbiter control. * * @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller. * @note Only support ADC2. */ static inline void adc_ll_enable_sleep_controller(void) { SENS.sar_meas2_mux.sar2_rtc_force = 1; } /** * Force switch ADC2 to arbiter in wakeup mode. * In sleep mode, the arbiter is in power-down mode. * Need to switch the controller to RTC to shield the control of the arbiter. * After waking up, it needs to switch to arbiter control. * * @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller. * @note Only support ADC2. */ static inline void adc_ll_disable_sleep_controller(void) { SENS.sar_meas2_mux.sar2_rtc_force = 0; } /* ADC calibration code. */ /** * Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. * @param channel adc channel number. * @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage. * false: Use IO external voltage as calibration voltage. */ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd) { /* Should be called before writing I2C registers. */ void phy_get_romfunc_addr(void); phy_get_romfunc_addr(); CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M); SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M); CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18)); SET_PERI_REG_MASK(ADC_LL_ANA_CONFIG2_REG, BIT(16)); /* Enable/disable internal connect GND (for calibration). */ if (adc_n == ADC_NUM_1) { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_DREF_ADDR, 4); if (internal_gnd) { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_ENCAL_GND_ADDR, 1); } else { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_ENCAL_GND_ADDR, 0); } } else { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_DREF_ADDR, 4); if (internal_gnd) { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_ENCAL_GND_ADDR, 1); } else { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_ENCAL_GND_ADDR, 0); } } } /** * Resume register status after calibration. * * @param adc_n ADC index number. */ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_ENCAL_GND_ADDR, 0); } else { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_ENCAL_GND_ADDR, 0); } } /** * Set the calibration result to ADC. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. */ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param) { uint8_t msb = param >> 8; uint8_t lsb = param & 0xFF; /* Should be called before writing I2C registers. */ void phy_get_romfunc_addr(void); phy_get_romfunc_addr(); SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M); CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, BIT(18)); SET_PERI_REG_MASK(ADC_LL_ANA_CONFIG2_REG, BIT(16)); if (adc_n == ADC_NUM_1) { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_INITIAL_CODE_HIGH_ADDR, msb); I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR1_INITIAL_CODE_LOW_ADDR, lsb); } else { I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_INITIAL_CODE_HIGH_ADDR, msb); I2C_WRITEREG_MASK_RTC(ADC_LL_I2C_ADC, ADC_LL_SAR2_INITIAL_CODE_LOW_ADDR, lsb); } } /* Temp code end. */ #ifdef __cplusplus } #endif