// Copyright 2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Hot It Works // ************ // 1. Components Overview // ====================== // Xtensa has useful feature: TRAX debug module. It allows recording program execution flow at run-time without disturbing CPU. // Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write // trace memory via its registers by means of JTAG, APB or ERI transactions. // ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory. // Chip allows muxing access to those trace memory blocks in such a way that while one block is accessed by CPUs another one can be accessed by host // by means of reading/writing TRAX registers via JTAG. Blocks muxing is configurable at run-time and allows switching trace memory blocks between // accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other. // This module implements application tracing feature based on above mechanisms. It allows to transfer arbitrary user data to/from // host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme. // ------>------ ----- (host components) ----- // | | | | // ------------------- ----------------------- ----------------------- ---------------- ------ --------- ----------------- // |trace data source|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data sink| // ------------------- ----------------------- ----------------------- ---------------- ------ --------- ----------------- // | | | | // | ------<------ ---------------- | // |<------------------------------------------->|TRAX_CTRL_REGS|<---->| // ---------------- // In general tracing goes in the following way. User application requests tracing module to send some data by calling esp_apptrace_buffer_get(), // module allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put(). // When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts. // While target application fills one TRAX block host reads another one via JTAG. // This module also allows communication in the opposite direction: from host to target. As it was said ESP32 and host can access different TRAX blocks // simultaneously, so while target writes trace data to one block host can write its own data (e.g. tracing commands) to another one then when // blocks are switched host receives trace data and target receives data written by host application. Target user application can read host data // by calling esp_apptrace_read() API. // To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing // can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores. // Overhead of this implementation on target CPU is produced only by allocating/managing buffers and copying of data. // On the host side special OpenOCD command must be used to read trace data. // 2. TRAX Registers layout // ======================== // This module uses two TRAX HW registers to communicate with host SW (OpenOCD). // - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields: // | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 | // 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host. // Host writes zero to this field when it finishes reading exposed block; // 21..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 2 bits; // 22 bit - 'host data present' flag. If set to one there is data from host, otherwise - no host data; // 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode; // - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then current CPU is changing TRAX registers and // this register holds address of the instruction which application will execute when it finishes with those registers modifications. // See 'Targets Connection' setion for details. // 3. Modes of operation // ===================== // This module supports two modes of operation: // - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block // exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest // trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them. // It can happen that system panic occurs when there are very small amount of data which are not exposed to host yet (e.g. crash just after the // TRAX block switch). In this case the previous 16KB of collected data will be dropped and host will see the latest, but very small piece of trace. // It can be insufficient to diagnose the problem. To avoid such situations there is menuconfig option // CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH // which controls the threshold for flushing data in case of panic. // - Streaming mode. Tracing module enters this mode when host connects to target and sets respective bits in control registers (per core). // In this mode before switching the block tracing module waits for the host to read all the data from the previously exposed block. // On panic tracing module also waits (timeout is configured via menuconfig via CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data. // 4. Communication Protocol // ========================= // 4.1 Trace Memory Blocks // ----------------------- // Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data available. // When current input memory block is filled it is exposed to host and 'block_len' and 'block_id' fields are updated in the control register. // Host reads new register value and according to it's value starts reading data from exposed block. Meanwhile target starts filling another trace block. // When host finishes reading the block it clears 'block_len' field in control register indicating to the target that it is ready to accept the next one. // If the host has some data to transfer to the target it writes them to trace memory block before clearing 'block_len' field. Then it sets // 'host_data_present' bit and clears 'block_len' field in control register. Upon every block switch target checks 'host_data_present' bit and if it is set // reads them to down buffer before writing any trace data to switched TRAX block. // 4.2 User Data Chunks Level // -------------------------- // Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in // multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation // that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing // module prepends all user data chunks with header which contains allocated buffer size and actual data length within it. OpenOCD command // which reads application traces reports error when it reads incomplete user data block. // Data which are transffered from host to target are also prepended with a header. Down channel data header is simple and consists of one two bytes field // containing length of host data following the header. // 4.3 Data Buffering // ------------------ // It takes some time for the host to read TRAX memory block via JTAG. In streaming mode it can happen that target has filled its TRAX block, but host // has not completed reading of the previous one yet. So in this case time critical tracing calls (which can not be delayed for too long time due to // the lack of free memory in TRAX block) can be dropped. To avoid such scenarios tracing module implements data buffering. Buffered data will be sent // to the host later when TRAX block switch occurs. The maximum size of the buffered data is controlled by menuconfig option // CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX. // 4.4 Target Connection/Disconnection // ----------------------------------- // When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set // on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control // register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing // non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with // the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU. // After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores // are set up they are resumed. Tracing starts without further intrusion into CPUs work. // When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm // as for connecting, but 'host connected' bits are cleared on ESP32 cores. // 5. Module Access Synchronization // ================================ // Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in // vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and // ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until // it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are: // - Support for timeouts. // - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion. // When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout. // So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU. // WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another. // WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting // on internal locks and for host to complete previous block reading, so if timeout value exceeds watchdog's one it can lead to the system reboot. // 6. Timeouts // =========== // Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in microseconds. // There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions: // - Trace data are locked by another task/ISR. When wating on trace data lock. // - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading. // When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed // time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned. #include #include #include "sdkconfig.h" #include "soc/soc.h" #include "soc/dport_access.h" #if CONFIG_IDF_TARGET_ESP32 #include "soc/dport_reg.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "soc/sensitive_reg.h" #endif #if __XTENSA__ #include "eri.h" #include "trax.h" #endif #include "soc/timer_periph.h" #include "freertos/FreeRTOS.h" #include "esp_app_trace.h" #include "esp_rom_sys.h" #if CONFIG_APPTRACE_ENABLE #define ESP_APPTRACE_MAX_VPRINTF_ARGS 256 #define ESP_APPTRACE_HOST_BUF_SIZE 256 #define ESP_APPTRACE_PRINT_LOCK 0 #include "esp_log.h" const static char *TAG = "esp_apptrace"; #if ESP_APPTRACE_PRINT_LOCK #define ESP_APPTRACE_LOG( format, ... ) \ do { \ esp_apptrace_log_lock(); \ esp_rom_printf(format, ##__VA_ARGS__); \ esp_apptrace_log_unlock(); \ } while(0) #else #define ESP_APPTRACE_LOG( format, ... ) \ do { \ esp_rom_printf(format, ##__VA_ARGS__); \ } while(0) #endif #define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... ) \ do { \ if (LOG_LOCAL_LEVEL >= level) { \ ESP_APPTRACE_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \ } \ } while(0) #define ESP_APPTRACE_LOGE( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__) #define ESP_APPTRACE_LOGW( format, ... ) ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__) #define ESP_APPTRACE_LOGI( format, ... ) ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__) #define ESP_APPTRACE_LOGD( format, ... ) ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__) #define ESP_APPTRACE_LOGV( format, ... ) ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__) #define ESP_APPTRACE_LOGO( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__) // TODO: move these (and same definitions in trax.c to dport_reg.h) #if CONFIG_IDF_TARGET_ESP32 #define TRACEMEM_MUX_PROBLK0_APPBLK1 0 #define TRACEMEM_MUX_BLK0_ONLY 1 #define TRACEMEM_MUX_BLK1_ONLY 2 #define TRACEMEM_MUX_PROBLK1_APPBLK0 3 #elif CONFIG_IDF_TARGET_ESP32S2 #define TRACEMEM_MUX_BLK0_NUM 19 #define TRACEMEM_MUX_BLK1_NUM 20 #define TRACEMEM_BLK_NUM2ADDR(_n_) (0x3FFB8000UL + 0x4000UL*((_n_)-4)) #endif // TRAX is disabled, so we use its registers for our own purposes // | 31..XXXXXX..24 | 23 .(host_connect). 23 | 22 .(host_data). 22| 21..(block_id)..15 | 14..(block_len)..0 | #define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT #define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC #define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL #define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK) #define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK) #define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0x7FUL #define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15) #define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) #define ESP_APPTRACE_TRAX_HOST_DATA (1 << 22) #define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23) #if CONFIG_SYSVIEW_ENABLE #define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) (0) #define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (_v_) #else #define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) ((_cid_) << 15) #define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (~(1 << 15) & (_v_)) #endif #define ESP_APPTRACE_USR_BLOCK_RAW_SZ(_s_) ((_s_) + sizeof(esp_tracedata_hdr_t)) #if CONFIG_IDF_TARGET_ESP32 static volatile uint8_t *s_trax_blocks[] = { (volatile uint8_t *) 0x3FFFC000, (volatile uint8_t *) 0x3FFF8000 }; #elif CONFIG_IDF_TARGET_ESP32S2 static volatile uint8_t *s_trax_blocks[] = { (volatile uint8_t *)TRACEMEM_BLK_NUM2ADDR(TRACEMEM_MUX_BLK0_NUM), (volatile uint8_t *)TRACEMEM_BLK_NUM2ADDR(TRACEMEM_MUX_BLK1_NUM) }; #endif #define ESP_APPTRACE_TRAX_BLOCKS_NUM (sizeof(s_trax_blocks)/sizeof(s_trax_blocks[0])) #define ESP_APPTRACE_TRAX_INBLOCK_START 0 #define ESP_APPTRACE_TRAX_INBLOCK_MARKER() (s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2]) #define ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(_v_) do {s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2] += (_v_);}while(0) #define ESP_APPTRACE_TRAX_INBLOCK_GET() (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2]) #define ESP_APPTRACE_TRAX_BLOCK_SIZE (0x4000UL) #if CONFIG_SYSVIEW_ENABLE #define ESP_APPTRACE_USR_DATA_LEN_MAX 255UL #else #define ESP_APPTRACE_USR_DATA_LEN_MAX (ESP_APPTRACE_TRAX_BLOCK_SIZE - sizeof(esp_tracedata_hdr_t)) #endif #define ESP_APPTRACE_HW_TRAX 0 #define ESP_APPTRACE_HW_MAX 1 #define ESP_APPTRACE_HW(_i_) (&s_trace_hw[_i_]) /** Trace data header. Every user data chunk is prepended with this header. * User allocates block with esp_apptrace_buffer_get and then fills it with data, * in multithreading environment it can happen that tasks gets buffer and then gets interrupted, * so it is possible that user data are incomplete when TRAX memory block is exposed to the host. * In this case host SW will see that wr_sz < block_sz and will report error. */ typedef struct { #if CONFIG_SYSVIEW_ENABLE uint8_t block_sz; // size of allocated block for user data uint8_t wr_sz; // size of actually written data #else uint16_t block_sz; // size of allocated block for user data uint16_t wr_sz; // size of actually written data #endif } esp_tracedata_hdr_t; /** TODO: docs */ typedef struct { uint16_t block_sz; // size of allocated block for user data } esp_hostdata_hdr_t; /** TRAX HW transport state */ typedef struct { uint32_t in_block; // input block ID // TODO: change to uint16_t uint32_t markers[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // block filling level markers } esp_apptrace_trax_state_t; /** memory block parameters */ typedef struct { uint8_t *start; // start address uint16_t sz; // size } esp_apptrace_mem_block_t; /** TRAX HW transport data */ typedef struct { volatile esp_apptrace_trax_state_t state; // state esp_apptrace_mem_block_t blocks[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // memory blocks #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 // ring buffer control struct for pending user blocks esp_apptrace_rb_t rb_pend; // storage for pending user blocks uint8_t pending_data[CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX + 1]; #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE // ring buffer control struct for pending user data chunks sizes, // every chunk contains whole number of user blocks and fit into TRAX memory block esp_apptrace_rb_t rb_pend_chunk_sz; // storage for above ring buffer data uint16_t pending_chunk_sz[CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX/ESP_APPTRACE_TRAX_BLOCK_SIZE + 2]; // current (accumulated) pending user data chunk size uint16_t cur_pending_chunk_sz; #endif #endif } esp_apptrace_trax_data_t; /** tracing module internal data */ typedef struct { esp_apptrace_lock_t lock; // sync lock uint8_t inited; // module initialization state flag // ring buffer control struct for data from host (down buffer) esp_apptrace_rb_t rb_down; // storage for above ring buffer data esp_apptrace_trax_data_t trax; // TRAX HW transport data } esp_apptrace_buffer_t; static esp_apptrace_buffer_t s_trace_buf; #if ESP_APPTRACE_PRINT_LOCK static esp_apptrace_lock_t s_log_lock = {.irq_stat = 0, .portmux = portMUX_INITIALIZER_UNLOCKED}; #endif typedef struct { uint8_t *(*get_up_buffer)(uint32_t, esp_apptrace_tmo_t *); esp_err_t (*put_up_buffer)(uint8_t *, esp_apptrace_tmo_t *); esp_err_t (*flush_up_buffer)(uint32_t, esp_apptrace_tmo_t *); uint8_t *(*get_down_buffer)(uint32_t *, esp_apptrace_tmo_t *); esp_err_t (*put_down_buffer)(uint8_t *, esp_apptrace_tmo_t *); bool (*host_is_connected)(void); esp_err_t (*status_reg_set)(uint32_t val); esp_err_t (*status_reg_get)(uint32_t *val); } esp_apptrace_hw_t; static uint32_t esp_apptrace_trax_down_buffer_write_nolock(uint8_t *data, uint32_t size); static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, esp_apptrace_tmo_t *tmo); static uint8_t *esp_apptrace_trax_get_buffer(uint32_t size, esp_apptrace_tmo_t *tmo); static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, esp_apptrace_tmo_t *tmo); static bool esp_apptrace_trax_host_is_connected(void); static uint8_t *esp_apptrace_trax_down_buffer_get(uint32_t *size, esp_apptrace_tmo_t *tmo); static esp_err_t esp_apptrace_trax_down_buffer_put(uint8_t *ptr, esp_apptrace_tmo_t *tmo); static esp_err_t esp_apptrace_trax_status_reg_set(uint32_t val); static esp_err_t esp_apptrace_trax_status_reg_get(uint32_t *val); static esp_apptrace_hw_t s_trace_hw[ESP_APPTRACE_HW_MAX] = { { .get_up_buffer = esp_apptrace_trax_get_buffer, .put_up_buffer = esp_apptrace_trax_put_buffer, .flush_up_buffer = esp_apptrace_trax_flush, .get_down_buffer = esp_apptrace_trax_down_buffer_get, .put_down_buffer = esp_apptrace_trax_down_buffer_put, .host_is_connected = esp_apptrace_trax_host_is_connected, .status_reg_set = esp_apptrace_trax_status_reg_set, .status_reg_get = esp_apptrace_trax_status_reg_get } }; static inline int esp_apptrace_log_lock(void) { #if ESP_APPTRACE_PRINT_LOCK esp_apptrace_tmo_t tmo; esp_apptrace_tmo_init(&tmo, ESP_APPTRACE_TMO_INFINITE); int ret = esp_apptrace_lock_take(&s_log_lock, &tmo); return ret; #else return 0; #endif } static inline void esp_apptrace_log_unlock(void) { #if ESP_APPTRACE_PRINT_LOCK esp_apptrace_lock_give(&s_log_lock); #endif } static inline esp_err_t esp_apptrace_lock_initialize(esp_apptrace_lock_t *lock) { #if CONFIG_APPTRACE_LOCK_ENABLE esp_apptrace_lock_init(lock); #endif return ESP_OK; } static inline esp_err_t esp_apptrace_lock_cleanup(void) { return ESP_OK; } esp_err_t esp_apptrace_lock(esp_apptrace_tmo_t *tmo) { #if CONFIG_APPTRACE_LOCK_ENABLE esp_err_t ret = esp_apptrace_lock_take(&s_trace_buf.lock, tmo); if (ret != ESP_OK) { return ESP_FAIL; } #endif return ESP_OK; } esp_err_t esp_apptrace_unlock(void) { esp_err_t ret = ESP_OK; #if CONFIG_APPTRACE_LOCK_ENABLE ret = esp_apptrace_lock_give(&s_trace_buf.lock); #endif return ret; } #if CONFIG_APPTRACE_DEST_TRAX static inline void esp_apptrace_trax_select_memory_block(int block_num) { // select memory block to be exposed to the TRAX module (accessed by host) #if CONFIG_IDF_TARGET_ESP32 DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY); #elif CONFIG_IDF_TARGET_ESP32S2 DPORT_WRITE_PERI_REG(DPORT_PMS_OCCUPY_3_REG, block_num ? BIT(TRACEMEM_MUX_BLK0_NUM-4) : BIT(TRACEMEM_MUX_BLK1_NUM-4)); #endif } static void esp_apptrace_trax_init(void) { // Stop trace, if any (on the current CPU) eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP); eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN); eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(ESP_APPTRACE_TRAX_INBLOCK_START)); // this is for OpenOCD to let him know where stub entries vector is resided // must be read by host before any transfer using TRAX eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0); ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", xPortGetCoreID()); } #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE // keep the size of buffered data for copying to TRAX mem block. // Only whole user blocks should be copied from buffer to TRAX block upon the switch static void esp_apptrace_trax_pend_chunk_sz_update(uint16_t size) { ESP_APPTRACE_LOGD("Update chunk enter %d/%d w-r-s %d-%d-%d", s_trace_buf.trax.cur_pending_chunk_sz, size, s_trace_buf.trax.rb_pend_chunk_sz.wr, s_trace_buf.trax.rb_pend_chunk_sz.rd, s_trace_buf.trax.rb_pend_chunk_sz.cur_size); if ((uint32_t)s_trace_buf.trax.cur_pending_chunk_sz + (uint32_t)size <= ESP_APPTRACE_TRAX_BLOCK_SIZE) { ESP_APPTRACE_LOGD("Update chunk %d/%d", s_trace_buf.trax.cur_pending_chunk_sz, size); s_trace_buf.trax.cur_pending_chunk_sz += size; } else { uint16_t *chunk_sz = (uint16_t *)esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend_chunk_sz, sizeof(uint16_t)); if (!chunk_sz) { assert(false && "Failed to alloc pended chunk sz slot!"); } else { ESP_APPTRACE_LOGD("Update new chunk %d/%d", s_trace_buf.trax.cur_pending_chunk_sz, size); *chunk_sz = s_trace_buf.trax.cur_pending_chunk_sz; s_trace_buf.trax.cur_pending_chunk_sz = size; } } } static uint16_t esp_apptrace_trax_pend_chunk_sz_get(void) { uint16_t ch_sz; ESP_APPTRACE_LOGD("Get chunk enter %d w-r-s %d-%d-%d", s_trace_buf.trax.cur_pending_chunk_sz, s_trace_buf.trax.rb_pend_chunk_sz.wr, s_trace_buf.trax.rb_pend_chunk_sz.rd, s_trace_buf.trax.rb_pend_chunk_sz.cur_size); uint16_t *chunk_sz = (uint16_t *)esp_apptrace_rb_consume(&s_trace_buf.trax.rb_pend_chunk_sz, sizeof(uint16_t)); if (!chunk_sz) { ch_sz = s_trace_buf.trax.cur_pending_chunk_sz; s_trace_buf.trax.cur_pending_chunk_sz = 0; } else { ch_sz = *chunk_sz; } return ch_sz; } #endif // assumed to be protected by caller from multi-core/thread access static __attribute__((noinline)) esp_err_t esp_apptrace_trax_block_switch(void) { int prev_block_num = s_trace_buf.trax.state.in_block % 2; int new_block_num = prev_block_num ? (0) : (1); int res = ESP_OK; extern uint32_t __esp_apptrace_trax_eri_updated; // indicate to host that we are about to update. // this is used only to place CPU into streaming mode at tracing startup // before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it // HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update, // here we set address to set bp at // enter ERI update critical section eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated); uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG); uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg; if (host_connected) { uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg); uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg); if (host_to_read != 0 || acked_block != (s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) { ESP_APPTRACE_LOGD("HC[%d]: Can not switch %x %d %x %x/%lx, m %d", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block, s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block, s_trace_buf.trax.state.markers[prev_block_num]); res = ESP_ERR_NO_MEM; goto _on_func_exit; } } s_trace_buf.trax.state.markers[new_block_num] = 0; // switch to new block s_trace_buf.trax.state.in_block++; esp_apptrace_trax_select_memory_block(new_block_num); // handle data from host esp_hostdata_hdr_t *hdr = (esp_hostdata_hdr_t *)s_trace_buf.trax.blocks[new_block_num].start; if (ctrl_reg & ESP_APPTRACE_TRAX_HOST_DATA && hdr->block_sz > 0) { // TODO: add support for multiple blocks from host, currently there is no need for that uint8_t *p = s_trace_buf.trax.blocks[new_block_num].start + s_trace_buf.trax.blocks[new_block_num].sz; ESP_APPTRACE_LOGD("Recvd %d bytes from host [%x %x %x %x %x %x %x %x .. %x %x %x %x %x %x %x %x]", hdr->block_sz, *(s_trace_buf.trax.blocks[new_block_num].start+0), *(s_trace_buf.trax.blocks[new_block_num].start+1), *(s_trace_buf.trax.blocks[new_block_num].start+2), *(s_trace_buf.trax.blocks[new_block_num].start+3), *(s_trace_buf.trax.blocks[new_block_num].start+4), *(s_trace_buf.trax.blocks[new_block_num].start+5), *(s_trace_buf.trax.blocks[new_block_num].start+6), *(s_trace_buf.trax.blocks[new_block_num].start+7), *(p-8), *(p-7), *(p-6), *(p-5), *(p-4), *(p-3), *(p-2), *(p-1)); uint32_t sz = esp_apptrace_trax_down_buffer_write_nolock((uint8_t *)(hdr+1), hdr->block_sz); if (sz != hdr->block_sz) { ESP_APPTRACE_LOGE("Failed to write %d bytes to down buffer (%d %d)!", hdr->block_sz - sz, hdr->block_sz, sz); } hdr->block_sz = 0; } #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 // copy pending data to TRAX block if any #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE uint16_t max_chunk_sz = esp_apptrace_trax_pend_chunk_sz_get(); #else uint16_t max_chunk_sz = s_trace_buf.trax.blocks[new_block_num].sz; #endif while (s_trace_buf.trax.state.markers[new_block_num] < max_chunk_sz) { uint32_t read_sz = esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend); if (read_sz == 0) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE /* theres is a bug: esp_apptrace_trax_pend_chunk_sz_get returned wrong value, it must be greater or equal to one returned by esp_apptrace_rb_read_size_get */ ESP_APPTRACE_LOGE("No pended bytes, must be > 0 and <= %d!", max_chunk_sz); #endif break; } if (read_sz > max_chunk_sz - s_trace_buf.trax.state.markers[new_block_num]) { read_sz = max_chunk_sz - s_trace_buf.trax.state.markers[new_block_num]; } uint8_t *ptr = esp_apptrace_rb_consume(&s_trace_buf.trax.rb_pend, read_sz); if (!ptr) { assert(false && "Failed to consume pended bytes!!"); break; } if (host_connected) { ESP_APPTRACE_LOGD("Pump %d pend bytes [%x %x %x %x : %x %x %x %x : %x %x %x %x : %x %x...%x %x]", read_sz, *(ptr+0), *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4), *(ptr+5), *(ptr+6), *(ptr+7), *(ptr+8), *(ptr+9), *(ptr+10), *(ptr+11), *(ptr+12), *(ptr+13), *(ptr+read_sz-2), *(ptr+read_sz-1)); } memcpy(s_trace_buf.trax.blocks[new_block_num].start + s_trace_buf.trax.state.markers[new_block_num], ptr, read_sz); s_trace_buf.trax.state.markers[new_block_num] += read_sz; } #endif eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(s_trace_buf.trax.state.in_block) | host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(s_trace_buf.trax.state.markers[prev_block_num])); _on_func_exit: // exit ERI update critical section eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0); // TODO: currently host sets breakpoint, use break instruction to stop; // it will allow to use ESP_APPTRACE_TRAX_STAT_REG for other purposes asm volatile ( " .global __esp_apptrace_trax_eri_updated\n" "__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start return res; } static esp_err_t esp_apptrace_trax_block_switch_waitus(esp_apptrace_tmo_t *tmo) { int res; while ((res = esp_apptrace_trax_block_switch()) != ESP_OK) { res = esp_apptrace_tmo_check(tmo); if (res != ESP_OK) { break; } } return res; } static uint8_t *esp_apptrace_trax_down_buffer_get(uint32_t *size, esp_apptrace_tmo_t *tmo) { uint8_t *ptr = NULL; int res = esp_apptrace_lock(tmo); if (res != ESP_OK) { return NULL; } while (1) { uint32_t sz = esp_apptrace_rb_read_size_get(&s_trace_buf.rb_down); if (sz != 0) { *size = MIN(*size, sz); ptr = esp_apptrace_rb_consume(&s_trace_buf.rb_down, *size); if (!ptr) { assert(false && "Failed to consume bytes from down buffer!"); } break; } // may need to flush uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG); if (ctrl_reg & ESP_APPTRACE_TRAX_HOST_DATA) { ESP_APPTRACE_LOGD("force flush"); res = esp_apptrace_trax_block_switch_waitus(tmo); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to switch to another block to recv data from host!"); /*do not return error because data can be in down buffer already*/ } } else { // check tmo only if there is no data from host res = esp_apptrace_tmo_check(tmo); if (res != ESP_OK) { return NULL; } } } if (esp_apptrace_unlock() != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); } return ptr; } static esp_err_t esp_apptrace_trax_down_buffer_put(uint8_t *ptr, esp_apptrace_tmo_t *tmo) { /* nothing todo */ return ESP_OK; } static uint32_t esp_apptrace_trax_down_buffer_write_nolock(uint8_t *data, uint32_t size) { uint32_t total_sz = 0; while (total_sz < size) { ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock WRS %d-%d-%d %d", s_trace_buf.rb_down.wr, s_trace_buf.rb_down.rd, s_trace_buf.rb_down.cur_size, size); uint32_t wr_sz = esp_apptrace_rb_write_size_get(&s_trace_buf.rb_down); if (wr_sz == 0) { break; } if (wr_sz > size - total_sz) { wr_sz = size - total_sz; } ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d", wr_sz); uint8_t *ptr = esp_apptrace_rb_produce(&s_trace_buf.rb_down, wr_sz); if (!ptr) { assert(false && "Failed to produce bytes to down buffer!"); } ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d to 0x%x from 0x%x", wr_sz, ptr, data + total_sz + wr_sz); memcpy(ptr, data + total_sz, wr_sz); total_sz += wr_sz; ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d/%d", wr_sz, total_sz); } return total_sz; } static inline uint8_t *esp_apptrace_data_header_init(uint8_t *ptr, uint16_t usr_size) { // it is safe to use xPortGetCoreID() in macro call because arg is used only once inside it ((esp_tracedata_hdr_t *)ptr)->block_sz = ESP_APPTRACE_USR_BLOCK_CORE(xPortGetCoreID()) | usr_size; ((esp_tracedata_hdr_t *)ptr)->wr_sz = 0; return ptr + sizeof(esp_tracedata_hdr_t); } static inline uint8_t *esp_apptrace_trax_wait4buf(uint16_t size, esp_apptrace_tmo_t *tmo, int *pended) { uint8_t *ptr = NULL; int res = esp_apptrace_trax_block_switch_waitus(tmo); if (res != ESP_OK) { return NULL; } // check if we still have pending data #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 if (esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend) > 0) { // if after TRAX block switch still have pending data (not all pending data have been pumped to TRAX block) // alloc new pending buffer *pended = 1; ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, size); if (!ptr) { ESP_APPTRACE_LOGE("Failed to alloc pend buf 1: w-r-s %d-%d-%d!", s_trace_buf.trax.rb_pend.wr, s_trace_buf.trax.rb_pend.rd, s_trace_buf.trax.rb_pend.cur_size); } } else #endif { // update block pointers if (ESP_APPTRACE_TRAX_INBLOCK_MARKER() + size > ESP_APPTRACE_TRAX_INBLOCK_GET()->sz) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 *pended = 1; ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, size); if (ptr == NULL) { ESP_APPTRACE_LOGE("Failed to alloc pend buf 2: w-r-s %d-%d-%d!", s_trace_buf.trax.rb_pend.wr, s_trace_buf.trax.rb_pend.rd, s_trace_buf.trax.rb_pend.cur_size); } #endif } else { *pended = 0; ptr = ESP_APPTRACE_TRAX_INBLOCK_GET()->start + ESP_APPTRACE_TRAX_INBLOCK_MARKER(); } } return ptr; } static uint8_t *esp_apptrace_trax_get_buffer(uint32_t size, esp_apptrace_tmo_t *tmo) { uint8_t *buf_ptr = NULL; if (size > ESP_APPTRACE_USR_DATA_LEN_MAX) { ESP_APPTRACE_LOGE("Too large user data size %d!", size); return NULL; } int res = esp_apptrace_lock(tmo); if (res != ESP_OK) { return NULL; } // check for data in the pending buffer #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 if (esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend) > 0) { // if we have buffered data try to switch TRAX block esp_apptrace_trax_block_switch(); // if switch was successful, part or all pended data have been copied to TRAX block } if (esp_apptrace_rb_read_size_get(&s_trace_buf.trax.rb_pend) > 0) { // if we have buffered data alloc new pending buffer ESP_APPTRACE_LOGD("Get %d bytes from PEND buffer", size); buf_ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); if (buf_ptr == NULL) { int pended_buf; buf_ptr = esp_apptrace_trax_wait4buf(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf); if (buf_ptr) { if (pended_buf) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); #endif } else { ESP_APPTRACE_LOGD("Get %d bytes from TRAX buffer", size); // update cur block marker ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); } } } else { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); #endif } } else #endif if (ESP_APPTRACE_TRAX_INBLOCK_MARKER() + ESP_APPTRACE_USR_BLOCK_RAW_SZ(size) > ESP_APPTRACE_TRAX_INBLOCK_GET()->sz) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 ESP_APPTRACE_LOGD("TRAX full. Get %d bytes from PEND buffer", size); buf_ptr = esp_apptrace_rb_produce(&s_trace_buf.trax.rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); if (buf_ptr) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); #endif } #endif if (buf_ptr == NULL) { int pended_buf; ESP_APPTRACE_LOGD("TRAX full. Get %d bytes from pend buffer", size); buf_ptr = esp_apptrace_trax_wait4buf(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf); if (buf_ptr) { if (pended_buf) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE esp_apptrace_trax_pend_chunk_sz_update(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); #endif } else { ESP_APPTRACE_LOGD("Got %d bytes from TRAX buffer", size); // update cur block marker ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); } } } } else { ESP_APPTRACE_LOGD("Get %d bytes from TRAX buffer", size); // fit to curr TRAX nlock buf_ptr = ESP_APPTRACE_TRAX_INBLOCK_GET()->start + ESP_APPTRACE_TRAX_INBLOCK_MARKER(); // update cur block marker ESP_APPTRACE_TRAX_INBLOCK_MARKER_UPD(ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); } if (buf_ptr) { buf_ptr = esp_apptrace_data_header_init(buf_ptr, size); } // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data if (esp_apptrace_unlock() != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); } return buf_ptr; } static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, esp_apptrace_tmo_t *tmo) { int res = ESP_OK; esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t)); // update written size hdr->wr_sz = hdr->block_sz; // TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written // TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to // higher prio tasks and the latter can not allocate buffers at all // this is abnormal situation can be detected on host which will receive only uncompleted buffers // workaround: use own memcpy which will kick-off dead tracing calls return res; } static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, esp_apptrace_tmo_t *tmo) { int res = ESP_OK; if (ESP_APPTRACE_TRAX_INBLOCK_MARKER() < min_sz) { ESP_APPTRACE_LOGI("Ignore flush request for min %d bytes. Bytes in TRAX block: %d.", min_sz, ESP_APPTRACE_TRAX_INBLOCK_MARKER()); return ESP_OK; } // switch TRAX block while size of data is more than min size while (ESP_APPTRACE_TRAX_INBLOCK_MARKER() > 0) { ESP_APPTRACE_LOGD("Try to flush %d bytes. Wait until block switch for %u us", ESP_APPTRACE_TRAX_INBLOCK_MARKER(), tmo->tmo); res = esp_apptrace_trax_block_switch_waitus(tmo); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to switch to another block!"); return res; } } return res; } static bool esp_apptrace_trax_host_is_connected(void) { return eri_read(ESP_APPTRACE_TRAX_CTRL_REG) & ESP_APPTRACE_TRAX_HOST_CONNECT ? true : false; } static esp_err_t esp_apptrace_trax_status_reg_set(uint32_t val) { eri_write(ESP_APPTRACE_TRAX_STAT_REG, val); return ESP_OK; } static esp_err_t esp_apptrace_trax_status_reg_get(uint32_t *val) { *val = eri_read(ESP_APPTRACE_TRAX_STAT_REG); return ESP_OK; } static esp_err_t esp_apptrace_trax_dest_init(void) { for (int i = 0; i < ESP_APPTRACE_TRAX_BLOCKS_NUM; i++) { s_trace_buf.trax.blocks[i].start = (uint8_t *)s_trax_blocks[i]; s_trace_buf.trax.blocks[i].sz = ESP_APPTRACE_TRAX_BLOCK_SIZE; s_trace_buf.trax.state.markers[i] = 0; } s_trace_buf.trax.state.in_block = ESP_APPTRACE_TRAX_INBLOCK_START; #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 esp_apptrace_rb_init(&s_trace_buf.trax.rb_pend, s_trace_buf.trax.pending_data, sizeof(s_trace_buf.trax.pending_data)); #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > ESP_APPTRACE_TRAX_BLOCK_SIZE s_trace_buf.trax.cur_pending_chunk_sz = 0; esp_apptrace_rb_init(&s_trace_buf.trax.rb_pend_chunk_sz, (uint8_t *)s_trace_buf.trax.pending_chunk_sz, sizeof(s_trace_buf.trax.pending_chunk_sz)); #endif #endif #if CONFIG_IDF_TARGET_ESP32 DPORT_WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M); #if CONFIG_FREERTOS_UNICORE == 0 DPORT_WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M); #endif #endif esp_apptrace_trax_select_memory_block(0); return ESP_OK; } #endif esp_err_t esp_apptrace_init(void) { int res; if (!s_trace_buf.inited) { memset(&s_trace_buf, 0, sizeof(s_trace_buf)); // disabled by default esp_apptrace_rb_init(&s_trace_buf.rb_down, NULL, 0); res = esp_apptrace_lock_initialize(&s_trace_buf.lock); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to init log lock (%d)!", res); return res; } #if CONFIG_APPTRACE_DEST_TRAX res = esp_apptrace_trax_dest_init(); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to init TRAX dest data (%d)!", res); esp_apptrace_lock_cleanup(); return res; } #endif } #if CONFIG_APPTRACE_DEST_TRAX // init TRAX on this CPU esp_apptrace_trax_init(); #endif s_trace_buf.inited |= 1 << xPortGetCoreID(); // global and this CPU-specific data are inited return ESP_OK; } void esp_apptrace_down_buffer_config(uint8_t *buf, uint32_t size) { esp_apptrace_rb_init(&s_trace_buf.rb_down, buf, size); } esp_err_t esp_apptrace_read(esp_apptrace_dest_t dest, void *buf, uint32_t *size, uint32_t user_tmo) { int res = ESP_OK; esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } if (buf == NULL || size == NULL || *size == 0) { return ESP_ERR_INVALID_ARG; } //TODO: callback system esp_apptrace_tmo_init(&tmo, user_tmo); uint32_t act_sz = *size; *size = 0; uint8_t * ptr = hw->get_down_buffer(&act_sz, &tmo); if (ptr && act_sz > 0) { ESP_APPTRACE_LOGD("Read %d bytes from host", act_sz); memcpy(buf, ptr, act_sz); res = hw->put_down_buffer(ptr, &tmo); *size = act_sz; } else { res = ESP_ERR_TIMEOUT; } return res; } uint8_t *esp_apptrace_down_buffer_get(esp_apptrace_dest_t dest, uint32_t *size, uint32_t user_tmo) { esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return NULL; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return NULL; } if (size == NULL || *size == 0) { return NULL; } esp_apptrace_tmo_init(&tmo, user_tmo); return hw->get_down_buffer(size, &tmo); } esp_err_t esp_apptrace_down_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo) { esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } if (ptr == NULL) { return ESP_ERR_INVALID_ARG; } esp_apptrace_tmo_init(&tmo, user_tmo); return hw->put_down_buffer(ptr, &tmo); } esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, const void *data, uint32_t size, uint32_t user_tmo) { uint8_t *ptr = NULL; esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } if (data == NULL || size == 0) { return ESP_ERR_INVALID_ARG; } esp_apptrace_tmo_init(&tmo, user_tmo); ptr = hw->get_up_buffer(size, &tmo); if (ptr == NULL) { return ESP_ERR_NO_MEM; } // actually can be suspended here by higher prio tasks/ISRs //TODO: use own memcpy with dead trace calls kick-off algo and tmo expiration check memcpy(ptr, data, size); // now indicate that this buffer is ready to be sent off to host return hw->put_up_buffer(ptr, &tmo); } int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap) { uint16_t nargs = 0; uint8_t *pout, *p = (uint8_t *)fmt; esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } if (fmt == NULL) { return ESP_ERR_INVALID_ARG; } esp_apptrace_tmo_init(&tmo, user_tmo); ESP_APPTRACE_LOGD("fmt %x", fmt); while ((p = (uint8_t *)strchr((char *)p, '%')) && nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS) { p++; if (*p != '%' && *p != 0) { nargs++; } } ESP_APPTRACE_LOGD("nargs = %d", nargs); if (p) { ESP_APPTRACE_LOGE("Failed to store all printf args!"); } pout = hw->get_up_buffer(1 + sizeof(char *) + nargs * sizeof(uint32_t), &tmo); if (pout == NULL) { ESP_APPTRACE_LOGE("Failed to get buffer!"); return -1; } p = pout; *pout = nargs; pout++; *(const char **)pout = fmt; pout += sizeof(char *); while (nargs-- > 0) { uint32_t arg = va_arg(ap, uint32_t); *(uint32_t *)pout = arg; pout += sizeof(uint32_t); ESP_APPTRACE_LOGD("arg %x", arg); } int ret = hw->put_up_buffer(p, &tmo); if (ret != ESP_OK) { ESP_APPTRACE_LOGE("Failed to put printf buf (%d)!", ret); return -1; } return (pout - p); } int esp_apptrace_vprintf(const char *fmt, va_list ap) { return esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, /*ESP_APPTRACE_TMO_INFINITE*/0, fmt, ap); } uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, uint32_t size, uint32_t user_tmo) { esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return NULL; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return NULL; } if (size == 0) { return NULL; } esp_apptrace_tmo_init(&tmo, user_tmo); return hw->get_up_buffer(size, &tmo); } esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo) { esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } if (ptr == NULL) { return ESP_ERR_INVALID_ARG; } esp_apptrace_tmo_init(&tmo, user_tmo); return hw->put_up_buffer(ptr, &tmo); } esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t usr_tmo) { esp_apptrace_tmo_t tmo; esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } esp_apptrace_tmo_init(&tmo, usr_tmo); return hw->flush_up_buffer(min_sz, &tmo); } esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t usr_tmo) { int res; esp_apptrace_tmo_t tmo; esp_apptrace_tmo_init(&tmo, usr_tmo); res = esp_apptrace_lock(&tmo); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to lock apptrace data (%d)!", res); return res; } res = esp_apptrace_flush_nolock(dest, 0, esp_apptrace_tmo_remaining_us(&tmo)); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to flush apptrace data (%d)!", res); } if (esp_apptrace_unlock() != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); } return res; } bool esp_apptrace_host_is_connected(esp_apptrace_dest_t dest) { esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return false; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return false; } return hw->host_is_connected(); } esp_err_t esp_apptrace_status_reg_set(esp_apptrace_dest_t dest, uint32_t val) { esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } return hw->status_reg_set(val); } esp_err_t esp_apptrace_status_reg_get(esp_apptrace_dest_t dest, uint32_t *val) { esp_apptrace_hw_t *hw = NULL; if (dest == ESP_APPTRACE_DEST_TRAX) { #if CONFIG_APPTRACE_DEST_TRAX hw = ESP_APPTRACE_HW(ESP_APPTRACE_HW_TRAX); #else ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!"); return ESP_ERR_NOT_SUPPORTED; #endif } else { ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!"); return ESP_ERR_NOT_SUPPORTED; } return hw->status_reg_get(val); } #endif