/* Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if we add more types of external RAM memory, this can be made into a more intelligent dispatcher. */ /* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_err.h" #include "esp32s3/spiram.h" #include "spiram_psram.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "soc/soc.h" #include "esp_heap_caps_init.h" #include "soc/soc_memory_layout.h" #include "soc/dport_reg.h" #include "esp32s3/rom/cache.h" #include "soc/cache_memory.h" #include "soc/extmem_reg.h" #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL #if CONFIG_SPIRAM static const char *TAG = "spiram"; #if CONFIG_SPIRAM_SPEED_40M #define PSRAM_SPEED PSRAM_CACHE_S40M #elif CONFIG_SPIRAM_SPEED_80M #define PSRAM_SPEED PSRAM_CACHE_S80M #else #define PSRAM_SPEED PSRAM_CACHE_S20M #endif static bool s_spiram_inited = false; /* Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been initialized (in a two-core system) or after the heap allocator has taken ownership of the memory. */ bool esp_spiram_test(void) { size_t spiram_size = esp_spiram_get_size(); volatile int *spiram = (volatile int *)(SOC_EXTRAM_DATA_HIGH - spiram_size); size_t p; size_t s = spiram_size; int errct = 0; int initial_err = -1; if (SOC_EXTRAM_DATA_SIZE < spiram_size) { ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH); spiram = (volatile int *)SOC_EXTRAM_DATA_LOW; s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW; } for (p = 0; p < (s / sizeof(int)); p += 8) { spiram[p] = p ^ 0xAAAAAAAA; } for (p = 0; p < (s / sizeof(int)); p += 8) { if (spiram[p] != (p ^ 0xAAAAAAAA)) { errct++; if (errct == 1) { initial_err = p * 4; } if (errct < 4) { ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA); } } } if (errct) { ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW); return false; } else { ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK"); return true; } } void IRAM_ATTR esp_spiram_init_cache(void) { size_t spiram_size = esp_spiram_get_size(); Cache_Suspend_DCache(); if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >= spiram_size) { Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, spiram_size >> 16, 0); } else { Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >> 16, 0); } REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS); #if !CONFIG_FREERTOS_UNICORE REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS); #endif Cache_Resume_DCache(0); } static uint32_t pages_for_flash = 0; static uint32_t instrcution_in_spiram = 0; static uint32_t rodata_in_spiram = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS static int instr_flash2spiram_offs = 0; static uint32_t instr_start_page = 0; static uint32_t instr_end_page = 0; #endif #if CONFIG_SPIRAM_RODATA static int rodata_flash2spiram_offs = 0; static uint32_t rodata_start_page = 0; static uint32_t rodata_end_page = 0; #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA static uint32_t page0_mapped = 0; static uint32_t page0_page = INVALID_PHY_PAGE; #endif uint32_t esp_spiram_instruction_access_enabled(void) { return instrcution_in_spiram; } uint32_t esp_spiram_rodata_access_enabled(void) { return rodata_in_spiram; } #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS esp_err_t esp_spiram_enable_instruction_access(void) { size_t spiram_size = esp_spiram_get_size(); uint32_t pages_in_flash = 0; pages_in_flash += Cache_Count_Flash_Pages(CACHE_IBUS, &page0_mapped); if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) { ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + pages_for_flash)); return ESP_FAIL; } ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM"); uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START); instr_flash2spiram_offs = mmu_value - pages_for_flash; ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs); pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_IBUS, IRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page); instrcution_in_spiram = 1; return ESP_OK; } #endif #if CONFIG_SPIRAM_RODATA esp_err_t esp_spiram_enable_rodata_access(void) { size_t spiram_size = esp_spiram_get_size(); uint32_t pages_in_flash = 0; pages_in_flash += Cache_Count_Flash_Pages(CACHE_DBUS, &page0_mapped); if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) { ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data."); return ESP_FAIL; } ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM"); uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START); rodata_flash2spiram_offs = mmu_value - pages_for_flash; ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs); pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_DBUS, DRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page); rodata_in_spiram = 1; return ESP_OK; } #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS void instruction_flash_page_info_init(void) { uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE; instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START); instr_start_page &= MMU_ADDRESS_MASK; instr_end_page = instr_start_page + instr_page_cnt - 1; } uint32_t IRAM_ATTR instruction_flash_start_page_get(void) { return instr_start_page; } uint32_t IRAM_ATTR instruction_flash_end_page_get(void) { return instr_end_page; } int IRAM_ATTR instruction_flash2spiram_offset(void) { return instr_flash2spiram_offs; } #endif #if CONFIG_SPIRAM_RODATA void rodata_flash_page_info_init(void) { uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~ (MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE; rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START); rodata_start_page &= MMU_ADDRESS_MASK; rodata_end_page = rodata_start_page + rodata_page_cnt - 1; } uint32_t IRAM_ATTR rodata_flash_start_page_get(void) { return rodata_start_page; } uint32_t IRAM_ATTR rodata_flash_end_page_get(void) { return rodata_end_page; } int IRAM_ATTR rodata_flash2spiram_offset(void) { return rodata_flash2spiram_offs; } #endif esp_err_t esp_spiram_init(void) { esp_err_t r; r = psram_enable(PSRAM_SPEED, PSRAM_MODE); if (r != ESP_OK) { #if CONFIG_SPIRAM_IGNORE_NOTFOUND ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out."); #endif return r; } s_spiram_inited = true; #if (CONFIG_SPIRAM_SIZE != -1) if (esp_spiram_get_size() != CONFIG_SPIRAM_SIZE) { ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE / 1024, esp_spiram_get_size() / 1024); return ESP_ERR_INVALID_SIZE; } #endif ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device", (esp_spiram_get_size() * 8) / (1024 * 1024)); ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \ PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m"); ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \ (PSRAM_MODE == PSRAM_VADDR_MODE_EVENODD) ? "even/odd (2-core)" : \ (PSRAM_MODE == PSRAM_VADDR_MODE_LOWHIGH) ? "low/high (2-core)" : \ (PSRAM_MODE == PSRAM_VADDR_MODE_NORMAL) ? "normal (1-core)" : "ERROR"); return ESP_OK; } esp_err_t esp_spiram_add_to_heapalloc(void) { size_t spiram_size = esp_spiram_get_size(); uint32_t size_for_flash = (pages_for_flash << 16); ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (pages_for_flash << 16)) / 1024); //Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's //no need to explicitly specify them. return heap_caps_add_region((intptr_t)SOC_EXTRAM_DATA_HIGH - spiram_size + size_for_flash, (intptr_t)SOC_EXTRAM_DATA_HIGH - 1); } static uint8_t *dma_heap; esp_err_t esp_spiram_reserve_dma_pool(size_t size) { if (size == 0) { return ESP_OK; //no-op } ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024); dma_heap = heap_caps_malloc(size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); if (!dma_heap) { return ESP_ERR_NO_MEM; } uint32_t caps[] = {MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT}; return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap + size - 1); } size_t esp_spiram_get_size(void) { if (!s_spiram_inited) { ESP_EARLY_LOGE(TAG, "SPI RAM not initialized"); abort(); } psram_size_t size = psram_get_size(); if (size == PSRAM_SIZE_16MBITS) { return 2 * 1024 * 1024; } if (size == PSRAM_SIZE_32MBITS) { return 4 * 1024 * 1024; } if (size == PSRAM_SIZE_64MBITS) { return 8 * 1024 * 1024; } if (size == PSRAM_SIZE_128MBITS) { return 16 * 1024 * 1024; } if (size == PSRAM_SIZE_256MBITS) { return 32 * 1024 * 1024; } return CONFIG_SPIRAM_SIZE; } /* Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first, otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this. */ void IRAM_ATTR esp_spiram_writeback_cache(void) { extern void Cache_WriteBack_All(void); Cache_WriteBack_All(); } /** * @brief If SPI RAM(PSRAM) has been initialized * * @return true SPI RAM has been initialized successfully * @return false SPI RAM hasn't been initialized or initialized failed */ bool esp_spiram_is_initialized(void) { return s_spiram_inited; } #endif