/* * SHA-256 implementation with hardware ESP32 support added. * Uses mbedTLS software implementation for failover when concurrent * SHA operations are in use. * * SPDX-FileCopyrightText: The Mbed TLS Contributors * * SPDX-License-Identifier: Apache-2.0 * * SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #include #if defined(MBEDTLS_SHA256_C) && defined(MBEDTLS_SHA256_ALT) #include "mbedtls/sha256.h" #include #if defined(MBEDTLS_SELF_TEST) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif /* MBEDTLS_PLATFORM_C */ #endif /* MBEDTLS_SELF_TEST */ #include "sha/sha_parallel_engine.h" /* Implementation that should never be optimized out by the compiler */ static void mbedtls_zeroize( void *v, size_t n ) { volatile unsigned char *p = v; while ( n-- ) { *p++ = 0; } } /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ do { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } while( 0 ) #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ do { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } while( 0 ) #endif void mbedtls_sha256_init( mbedtls_sha256_context *ctx ) { memset( ctx, 0, sizeof( mbedtls_sha256_context ) ); } void mbedtls_sha256_free( mbedtls_sha256_context *ctx ) { if ( ctx == NULL ) { return; } if (ctx->mode == ESP_MBEDTLS_SHA256_HARDWARE) { esp_sha_unlock_engine(SHA2_256); } mbedtls_zeroize( ctx, sizeof( mbedtls_sha256_context ) ); } void mbedtls_sha256_clone( mbedtls_sha256_context *dst, const mbedtls_sha256_context *src ) { *dst = *src; if (src->mode == ESP_MBEDTLS_SHA256_HARDWARE) { /* Copy hardware digest state out to cloned state, which will become a software digest. */ esp_sha_read_digest_state(SHA2_256, dst->state); dst->mode = ESP_MBEDTLS_SHA256_SOFTWARE; } } /* * SHA-256 context setup */ int mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 ) { ctx->total[0] = 0; ctx->total[1] = 0; if ( is224 == 0 ) { /* SHA-256 */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } else { /* SHA-224 */ ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; } ctx->is224 = is224; if (ctx->mode == ESP_MBEDTLS_SHA256_HARDWARE) { esp_sha_unlock_engine(SHA2_256); } ctx->mode = ESP_MBEDTLS_SHA256_UNUSED; return 0; } static const uint32_t K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; #define SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } static void mbedtls_sha256_software_process( mbedtls_sha256_context *ctx, const unsigned char data[64] ); int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx, const unsigned char data[64] ) { bool first_block = false; if (ctx->mode == ESP_MBEDTLS_SHA256_UNUSED) { /* try to use hardware for this digest */ if (!ctx->is224 && esp_sha_try_lock_engine(SHA2_256)) { ctx->mode = ESP_MBEDTLS_SHA256_HARDWARE; first_block = true; } else { ctx->mode = ESP_MBEDTLS_SHA256_SOFTWARE; } } if (ctx->mode == ESP_MBEDTLS_SHA256_HARDWARE) { esp_sha_block(SHA2_256, data, first_block); } else { mbedtls_sha256_software_process(ctx, data); } return 0; } static void mbedtls_sha256_software_process( mbedtls_sha256_context *ctx, const unsigned char data[64] ) { uint32_t temp1, temp2, W[64]; uint32_t A[8]; unsigned int i; for ( i = 0; i < 8; i++ ) { A[i] = ctx->state[i]; } #if defined(MBEDTLS_SHA256_SMALLER) for ( i = 0; i < 64; i++ ) { if ( i < 16 ) { GET_UINT32_BE( W[i], data, 4 * i ); } else { R( i ); } P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i] ); temp1 = A[7]; A[7] = A[6]; A[6] = A[5]; A[5] = A[4]; A[4] = A[3]; A[3] = A[2]; A[2] = A[1]; A[1] = A[0]; A[0] = temp1; } #else /* MBEDTLS_SHA256_SMALLER */ for ( i = 0; i < 16; i++ ) { GET_UINT32_BE( W[i], data, 4 * i ); } for ( i = 0; i < 16; i += 8 ) { P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i + 0], K[i + 0] ); P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i + 1], K[i + 1] ); P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i + 2], K[i + 2] ); P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i + 3], K[i + 3] ); P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i + 4], K[i + 4] ); P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i + 5], K[i + 5] ); P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i + 6], K[i + 6] ); P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i + 7], K[i + 7] ); } for ( i = 16; i < 64; i += 8 ) { P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], R(i + 0), K[i + 0] ); P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], R(i + 1), K[i + 1] ); P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], R(i + 2), K[i + 2] ); P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], R(i + 3), K[i + 3] ); P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], R(i + 4), K[i + 4] ); P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], R(i + 5), K[i + 5] ); P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], R(i + 6), K[i + 6] ); P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], R(i + 7), K[i + 7] ); } #endif /* MBEDTLS_SHA256_SMALLER */ for ( i = 0; i < 8; i++ ) { ctx->state[i] += A[i]; } } /* * SHA-256 process buffer */ int mbedtls_sha256_update( mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen ) { int ret; size_t fill; uint32_t left; if ( ilen == 0 ) { return 0; } left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if ( ctx->total[0] < (uint32_t) ilen ) { ctx->total[1]++; } if ( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); if ( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 ) { return ret; } input += fill; ilen -= fill; left = 0; } while ( ilen >= 64 ) { if ( ( ret = mbedtls_internal_sha256_process( ctx, input ) ) != 0 ) { return ret; } input += 64; ilen -= 64; } if ( ilen > 0 ) { memcpy( (void *) (ctx->buffer + left), input, ilen ); } return 0; } static const unsigned char sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * SHA-256 final digest */ int mbedtls_sha256_finish( mbedtls_sha256_context *ctx, unsigned char *output ) { int ret; uint32_t last, padn; uint32_t high, low; unsigned char msglen[8]; high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT32_BE( high, msglen, 0 ); PUT_UINT32_BE( low, msglen, 4 ); last = ctx->total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); if ( ( ret = mbedtls_sha256_update( ctx, sha256_padding, padn ) ) != 0 ) { goto out; } if ( ( ret = mbedtls_sha256_update( ctx, msglen, 8 ) ) != 0 ) { goto out; } /* if state is in hardware, read it out */ if (ctx->mode == ESP_MBEDTLS_SHA256_HARDWARE) { esp_sha_read_digest_state(SHA2_256, ctx->state); } PUT_UINT32_BE( ctx->state[0], output, 0 ); PUT_UINT32_BE( ctx->state[1], output, 4 ); PUT_UINT32_BE( ctx->state[2], output, 8 ); PUT_UINT32_BE( ctx->state[3], output, 12 ); PUT_UINT32_BE( ctx->state[4], output, 16 ); PUT_UINT32_BE( ctx->state[5], output, 20 ); PUT_UINT32_BE( ctx->state[6], output, 24 ); if ( ctx->is224 == 0 ) { PUT_UINT32_BE( ctx->state[7], output, 28 ); } out: if (ctx->mode == ESP_MBEDTLS_SHA256_HARDWARE) { esp_sha_unlock_engine(SHA2_256); ctx->mode = ESP_MBEDTLS_SHA256_SOFTWARE; } return ret; } #endif /* MBEDTLS_SHA256_C && MBEDTLS_SHA256_ALT */