// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <stdlib.h> #include <string.h> #include <sys/param.h> // For MIN/MAX #include "spi_flash_chip_generic.h" #include "spi_flash_defs.h" #include "esp_log.h" #include "esp_attr.h" static const char TAG[] = "chip_generic"; typedef struct flash_chip_dummy { uint8_t dio_dummy_bitlen; uint8_t qio_dummy_bitlen; uint8_t qout_dummy_bitlen; uint8_t dout_dummy_bitlen; uint8_t fastrd_dummy_bitlen; uint8_t slowrd_dummy_bitlen; } flash_chip_dummy_t; // These parameters can be placed in the ROM. For now we use the code in IDF. DRAM_ATTR const static flash_chip_dummy_t default_flash_chip_dummy = { .dio_dummy_bitlen = SPI_FLASH_DIO_DUMMY_BITLEN, .qio_dummy_bitlen = SPI_FLASH_QIO_DUMMY_BITLEN, .qout_dummy_bitlen = SPI_FLASH_QOUT_DUMMY_BITLEN, .dout_dummy_bitlen = SPI_FLASH_DOUT_DUMMY_BITLEN, .fastrd_dummy_bitlen = SPI_FLASH_FASTRD_DUMMY_BITLEN, .slowrd_dummy_bitlen = SPI_FLASH_SLOWRD_DUMMY_BITLEN, }; DRAM_ATTR flash_chip_dummy_t *rom_flash_chip_dummy = (flash_chip_dummy_t *)&default_flash_chip_dummy; #define SPI_FLASH_DEFAULT_IDLE_TIMEOUT_MS 200 #define SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT_MS 4000 #define SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT_MS 500 //according to GD25Q127 + 100ms #define SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT_MS 1300 //according to GD25Q127 + 100ms #define SPI_FLASH_GENERIC_PAGE_PROGRAM_TIMEOUT_MS 500 #define HOST_DELAY_INTERVAL_US 1 #define CHIP_WAIT_IDLE_INTERVAL_US 20 const DRAM_ATTR flash_chip_op_timeout_t spi_flash_chip_generic_timeout = { .chip_erase_timeout = SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT_MS * 1000, .block_erase_timeout = SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT_MS * 1000, .sector_erase_timeout = SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT_MS * 1000, .idle_timeout = SPI_FLASH_DEFAULT_IDLE_TIMEOUT_MS * 1000, .page_program_timeout = SPI_FLASH_GENERIC_PAGE_PROGRAM_TIMEOUT_MS * 1000, }; esp_err_t spi_flash_chip_generic_probe(esp_flash_t *chip, uint32_t flash_id) { // This is the catch-all probe function, claim the chip always if nothing // else has claimed it yet. return ESP_OK; } esp_err_t spi_flash_chip_generic_reset(esp_flash_t *chip) { //this is written following the winbond spec.. spi_flash_trans_t t; t = (spi_flash_trans_t) { .command = CMD_RST_EN, }; esp_err_t err = chip->host->driver->common_command(chip->host, &t); if (err != ESP_OK) { return err; } t = (spi_flash_trans_t) { .command = CMD_RST_DEV, }; err = chip->host->driver->common_command(chip->host, &t); if (err != ESP_OK) { return err; } err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); return err; } esp_err_t spi_flash_chip_generic_detect_size(esp_flash_t *chip, uint32_t *size) { uint32_t id = chip->chip_id; *size = 0; /* Can't detect size unless the high byte of the product ID matches the same convention, which is usually 0x40 or * 0xC0 or similar. */ if (((id & 0xFFFF) == 0x0000) || ((id & 0xFFFF) == 0xFFFF)) { return ESP_ERR_FLASH_UNSUPPORTED_CHIP; } *size = 1 << (id & 0xFF); return ESP_OK; } esp_err_t spi_flash_chip_generic_erase_chip(esp_flash_t *chip) { esp_err_t err; err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); } if (err == ESP_OK) { chip->host->driver->erase_chip(chip->host); //to save time, flush cache here if (chip->host->driver->flush_cache) { err = chip->host->driver->flush_cache(chip->host, 0, chip->size); if (err != ESP_OK) { return err; } } err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->chip_erase_timeout); } return err; } esp_err_t spi_flash_chip_generic_erase_sector(esp_flash_t *chip, uint32_t start_address) { esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); } if (err == ESP_OK) { chip->host->driver->erase_sector(chip->host, start_address); //to save time, flush cache here if (chip->host->driver->flush_cache) { err = chip->host->driver->flush_cache(chip->host, start_address, chip->chip_drv->sector_size); if (err != ESP_OK) { return err; } } err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->sector_erase_timeout); } return err; } esp_err_t spi_flash_chip_generic_erase_block(esp_flash_t *chip, uint32_t start_address) { esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); } if (err == ESP_OK) { chip->host->driver->erase_block(chip->host, start_address); //to save time, flush cache here if (chip->host->driver->flush_cache) { err = chip->host->driver->flush_cache(chip->host, start_address, chip->chip_drv->block_erase_size); if (err != ESP_OK) { return err; } } err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->block_erase_timeout); } return err; } esp_err_t spi_flash_chip_generic_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length) { esp_err_t err = ESP_OK; const uint32_t page_size = chip->chip_drv->page_size; uint32_t align_address; uint8_t temp_buffer[64]; //spiflash hal max length of read no longer than 64byte // Configure the host, and return err = spi_flash_chip_generic_config_host_io_mode(chip); if (err == ESP_ERR_NOT_SUPPORTED) { ESP_LOGE(TAG, "configure host io mode failed - unsupported"); return err; } while (err == ESP_OK && length > 0) { memset(temp_buffer, 0xFF, sizeof(temp_buffer)); uint32_t read_len = chip->host->driver->read_data_slicer(chip->host, address, length, &align_address, page_size); uint32_t left_off = address - align_address; uint32_t data_len = MIN(align_address + read_len, address + length) - address; err = chip->host->driver->read(chip->host, temp_buffer, align_address, read_len); memcpy(buffer, temp_buffer + left_off, data_len); address += data_len; buffer = (void *)((intptr_t)buffer + data_len); length = length - data_len; } return err; } esp_err_t spi_flash_chip_generic_page_program(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { esp_err_t err; err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); if (err == ESP_OK) { // Perform the actual Page Program command chip->host->driver->program_page(chip->host, buffer, address, length); err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->page_program_timeout); } return err; } esp_err_t spi_flash_chip_generic_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { esp_err_t err = ESP_OK; const uint32_t page_size = chip->chip_drv->page_size; uint32_t align_address; uint8_t temp_buffer[64]; //spiflash hal max length of write no longer than 64byte while (err == ESP_OK && length > 0) { memset(temp_buffer, 0xFF, sizeof(temp_buffer)); uint32_t page_len = chip->host->driver->write_data_slicer(chip->host, address, length, &align_address, page_size); uint32_t left_off = address - align_address; uint32_t write_len = MIN(align_address + page_len, address + length) - address; memcpy(temp_buffer + left_off, buffer, write_len); err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK && length > 0) { err = chip->chip_drv->program_page(chip, temp_buffer, align_address, page_len); address += write_len; buffer = (void *)((intptr_t)buffer + write_len); length -= write_len; } } if (err == ESP_OK && chip->host->driver->flush_cache) { err = chip->host->driver->flush_cache(chip->host, address, length); } return err; } esp_err_t spi_flash_chip_generic_write_encrypted(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { return ESP_ERR_FLASH_UNSUPPORTED_HOST; // TODO } esp_err_t spi_flash_chip_generic_set_write_protect(esp_flash_t *chip, bool write_protect) { esp_err_t err = ESP_OK; err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); if (err == ESP_OK) { chip->host->driver->set_write_protect(chip->host, write_protect); } bool wp_read; err = chip->chip_drv->get_chip_write_protect(chip, &wp_read); if (err == ESP_OK && wp_read != write_protect) { // WREN flag has not been set! err = ESP_ERR_NOT_FOUND; } return err; } esp_err_t spi_flash_chip_generic_get_write_protect(esp_flash_t *chip, bool *out_write_protect) { esp_err_t err = ESP_OK; uint8_t status; assert(out_write_protect!=NULL); err = chip->host->driver->read_status(chip->host, &status); if (err != ESP_OK) { return err; } *out_write_protect = ((status & SR_WREN) == 0); return err; } esp_err_t spi_flash_generic_wait_host_idle(esp_flash_t *chip, uint32_t *timeout_us) { while (chip->host->driver->host_idle(chip->host) && *timeout_us > 0) { #if HOST_DELAY_INTERVAL_US > 0 if (*timeout_us > 1) { int delay = MIN(HOST_DELAY_INTERVAL_US, *timeout_us); chip->os_func->delay_us(chip->os_func_data, delay); *timeout_us -= delay; } else { return ESP_ERR_TIMEOUT; } #endif } return ESP_OK; } esp_err_t spi_flash_chip_generic_wait_idle(esp_flash_t *chip, uint32_t timeout_us) { timeout_us++; // allow at least one pass before timeout, last one has no sleep cycle uint8_t status = 0; const int interval = CHIP_WAIT_IDLE_INTERVAL_US; while (timeout_us > 0) { esp_err_t err = spi_flash_generic_wait_host_idle(chip, & timeout_us); if (err != ESP_OK) { return err; } err = chip->host->driver->read_status(chip->host, &status); if (err != ESP_OK) { return err; } if ((status & SR_WIP) == 0) { break; // Write in progress is complete } if (timeout_us > 0 && interval > 0) { int delay = MIN(interval, timeout_us); chip->os_func->delay_us(chip->os_func_data, delay); timeout_us -= delay; } } return (timeout_us > 0) ? ESP_OK : ESP_ERR_TIMEOUT; } esp_err_t spi_flash_chip_generic_config_host_io_mode(esp_flash_t *chip) { uint32_t dummy_cyclelen_base; uint32_t addr_bitlen; uint32_t read_command; switch (chip->read_mode) { case SPI_FLASH_QIO: //for QIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that. addr_bitlen = SPI_FLASH_QIO_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->qio_dummy_bitlen; read_command = CMD_FASTRD_QIO; break; case SPI_FLASH_QOUT: addr_bitlen = SPI_FLASH_QOUT_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->qout_dummy_bitlen; read_command = CMD_FASTRD_QUAD; break; case SPI_FLASH_DIO: //for DIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that. addr_bitlen = SPI_FLASH_DIO_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->dio_dummy_bitlen; read_command = CMD_FASTRD_DIO; break; case SPI_FLASH_DOUT: addr_bitlen = SPI_FLASH_DOUT_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->dout_dummy_bitlen; read_command = CMD_FASTRD_DUAL; break; case SPI_FLASH_FASTRD: addr_bitlen = SPI_FLASH_FASTRD_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->fastrd_dummy_bitlen; read_command = CMD_FASTRD; break; case SPI_FLASH_SLOWRD: addr_bitlen = SPI_FLASH_SLOWRD_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->slowrd_dummy_bitlen; read_command = CMD_READ; break; default: return ESP_ERR_FLASH_NOT_INITIALISED; } return chip->host->driver->configure_host_io_mode(chip->host, read_command, addr_bitlen, dummy_cyclelen_base, chip->read_mode); } esp_err_t spi_flash_chip_generic_get_io_mode(esp_flash_t *chip, esp_flash_io_mode_t* out_io_mode) { // On "generic" chips, this involves checking // bit 1 (QE) of RDSR2 (35h) result // (it works this way on GigaDevice & Fudan Micro chips, probably others...) const uint8_t BIT_QE = 1 << 1; uint32_t sr; esp_err_t ret = spi_flash_common_read_status_8b_rdsr2(chip, &sr); if (ret == ESP_OK) { *out_io_mode = ((sr & BIT_QE)? SPI_FLASH_QOUT: 0); } return ret; } esp_err_t spi_flash_chip_generic_set_io_mode(esp_flash_t *chip) { // On "generic" chips, this involves checking // bit 9 (QE) of RDSR (05h) result const uint32_t BIT_QE = 1 << 9; return spi_flash_common_set_io_mode(chip, spi_flash_common_write_status_16b_wrsr, spi_flash_common_read_status_16b_rdsr_rdsr2, BIT_QE); } static const char chip_name[] = "generic"; const spi_flash_chip_t esp_flash_chip_generic = { .name = chip_name, .timeout = &spi_flash_chip_generic_timeout, .probe = spi_flash_chip_generic_probe, .reset = spi_flash_chip_generic_reset, .detect_size = spi_flash_chip_generic_detect_size, .erase_chip = spi_flash_chip_generic_erase_chip, .erase_sector = spi_flash_chip_generic_erase_sector, .erase_block = spi_flash_chip_generic_erase_block, .sector_size = 4 * 1024, .block_erase_size = 64 * 1024, // TODO: figure out if generic chip-wide protection bits exist across some manufacturers .get_chip_write_protect = spi_flash_chip_generic_get_write_protect, .set_chip_write_protect = spi_flash_chip_generic_set_write_protect, // Chip write protection regions do not appear to be standardised // at all, this is implemented in chip-specific drivers only. .num_protectable_regions = 0, .protectable_regions = NULL, .get_protected_regions = NULL, .set_protected_regions = NULL, .read = spi_flash_chip_generic_read, .write = spi_flash_chip_generic_write, .program_page = spi_flash_chip_generic_page_program, .page_size = 256, .write_encrypted = spi_flash_chip_generic_write_encrypted, .wait_idle = spi_flash_chip_generic_wait_idle, .set_io_mode = spi_flash_chip_generic_set_io_mode, .get_io_mode = spi_flash_chip_generic_get_io_mode, }; /******************************************************************************* * Utility functions ******************************************************************************/ static esp_err_t spi_flash_common_read_qe_sr(esp_flash_t *chip, uint8_t qe_rdsr_command, uint8_t qe_sr_bitwidth, uint32_t *sr) { uint32_t sr_buf = 0; spi_flash_trans_t t = { .command = qe_rdsr_command, .miso_data = (uint8_t*) &sr_buf, .miso_len = qe_sr_bitwidth / 8, }; esp_err_t ret = chip->host->driver->common_command(chip->host, &t); *sr = sr_buf; return ret; } static esp_err_t spi_flash_common_write_qe_sr(esp_flash_t *chip, uint8_t qe_wrsr_command, uint8_t qe_sr_bitwidth, uint32_t qe) { spi_flash_trans_t t = { .command = qe_wrsr_command, .mosi_data = ((uint8_t*) &qe), .mosi_len = qe_sr_bitwidth / 8, .miso_len = 0, }; return chip->host->driver->common_command(chip->host, &t); } esp_err_t spi_flash_common_read_status_16b_rdsr_rdsr2(esp_flash_t* chip, uint32_t* out_sr) { uint32_t sr, sr2; esp_err_t ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, &sr2); if (ret == ESP_OK) { ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, &sr); } if (ret == ESP_OK) { *out_sr = (sr & 0xff) | ((sr2 & 0xff) << 8); } return ret; } esp_err_t spi_flash_common_read_status_8b_rdsr2(esp_flash_t* chip, uint32_t* out_sr) { return spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, out_sr); } esp_err_t spi_flash_common_read_status_8b_rdsr(esp_flash_t* chip, uint32_t* out_sr) { return spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, out_sr); } esp_err_t spi_flash_common_write_status_16b_wrsr(esp_flash_t* chip, uint32_t sr) { return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 16, sr); } esp_err_t spi_flash_common_write_status_8b_wrsr(esp_flash_t* chip, uint32_t sr) { return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 8, sr); } esp_err_t spi_flash_common_write_status_8b_wrsr2(esp_flash_t* chip, uint32_t sr) { return spi_flash_common_write_qe_sr(chip, CMD_WRSR2, 8, sr); } esp_err_t spi_flash_common_set_io_mode(esp_flash_t *chip, esp_flash_wrsr_func_t wrsr_func, esp_flash_rdsr_func_t rdsr_func, uint32_t qe_sr_bit) { esp_err_t ret = ESP_OK; const bool is_quad_mode = esp_flash_is_quad_mode(chip); bool update_config = false; /* * By default, we don't clear the QE bit even the flash mode is not QIO or QOUT. Force clearing * QE bit by the generic chip driver (command 01H with 2 bytes) may cause the output of some * chips (MXIC) no longer valid. * Enable this option when testing a new flash chip for clearing of QE. */ const bool force_check = false; bool need_check = is_quad_mode || force_check; uint32_t sr_update; if (need_check) { // Ensure quad modes are enabled, using the Quad Enable parameters supplied. uint32_t sr; ret = (*rdsr_func)(chip, &sr); if (ret != ESP_OK) { return ret; } ESP_EARLY_LOGD(TAG, "set_io_mode: status before 0x%x", sr); if (is_quad_mode) { sr_update = sr | qe_sr_bit; } else { sr_update = sr & (~qe_sr_bit); } ESP_EARLY_LOGV(TAG, "set_io_mode: status update 0x%x", sr_update); if (sr != sr_update) { update_config = true; } } if (update_config) { //some chips needs the write protect to be disabled before writing to Status Register chip->chip_drv->set_chip_write_protect(chip, false); ret = (*wrsr_func)(chip, sr_update); if (ret != ESP_OK) { return ret; } ret = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); if (ret != ESP_OK) { return ret; } /* Check the new QE bit has stayed set */ uint32_t sr; ret = (*rdsr_func)(chip, &sr); if (ret != ESP_OK) { return ret; } ESP_EARLY_LOGD(TAG, "set_io_mode: status after 0x%x", sr); if (sr != sr_update) { ret = ESP_ERR_FLASH_NO_RESPONSE; } chip->chip_drv->set_chip_write_protect(chip, true); } return ret; }