/* Copyright 2018 Espressif Systems (Shanghai) PTE LTD * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // mbc_tcp_slave.c // Implementation of the Modbus controller TCP slave #include <sys/time.h> // for calculation of time stamp in milliseconds #include "esp_log.h" // for log_write #include "mb.h" // for mb types definition #include "mbutils.h" // for mbutils functions definition for stack callback #include "port.h" // for port callback functions and defines #include "sdkconfig.h" // for KConfig values #include "esp_modbus_common.h" // for common defines #include "esp_modbus_slave.h" // for public slave interface types #include "mbc_slave.h" // for private slave interface types #include "mbc_tcp_slave.h" // for tcp slave mb controller defines #include "port_tcp_slave.h" // for tcp slave port defines // Shared pointer to interface structure static mb_slave_interface_t* mbs_interface_ptr = NULL; // The helper function to get time stamp in microseconds static uint64_t get_time_stamp(void) { uint64_t time_stamp = esp_timer_get_time(); return time_stamp; } // Modbus task function static void modbus_tcp_slave_task(void *pvParameters) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; // Main Modbus stack processing cycle for (;;) { BaseType_t status = xEventGroupWaitBits(mbs_opts->mbs_event_group, (BaseType_t)(MB_EVENT_STACK_STARTED), pdFALSE, // do not clear bits pdFALSE, portMAX_DELAY); // Check if stack started then poll for data if (status & MB_EVENT_STACK_STARTED) { (void)eMBPoll(); // allow stack to process data } } } // Setup Modbus controller parameters static esp_err_t mbc_tcp_slave_setup(void* comm_info) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_CHECK((comm_info != NULL), ESP_ERR_INVALID_ARG, "mb wrong communication settings."); mb_communication_info_t* comm_settings = (mb_communication_info_t*)comm_info; MB_SLAVE_CHECK((comm_settings->ip_mode == MB_MODE_TCP), ESP_ERR_INVALID_ARG, "mb incorrect mode = (0x%x).", (uint8_t)comm_settings->ip_mode); MB_SLAVE_CHECK(((comm_settings->ip_addr_type == MB_IPV4) || (comm_settings->ip_addr_type == MB_IPV6)), ESP_ERR_INVALID_ARG, "mb incorrect addr type = (0x%x).", (uint8_t)comm_settings->ip_addr_type); MB_SLAVE_CHECK((comm_settings->ip_netif_ptr != NULL), ESP_ERR_INVALID_ARG, "mb incorrect iface address."); // Set communication options of the controller mbs_opts->mbs_comm = *comm_settings; return ESP_OK; } // Start Modbus controller start function static esp_err_t mbc_tcp_slave_start(void) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; eMBErrorCode status = MB_EIO; // Initialize Modbus stack using mbcontroller parameters status = eMBTCPInit((USHORT)mbs_opts->mbs_comm.ip_port); MB_SLAVE_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb stack initialization failure, eMBInit() returns (0x%x).", status); eMBPortProto proto = (mbs_opts->mbs_comm.ip_mode == MB_MODE_TCP) ? MB_PROTO_TCP : MB_PROTO_UDP; eMBPortIpVer ip_ver = (mbs_opts->mbs_comm.ip_addr_type == MB_IPV4) ? MB_PORT_IPV4 : MB_PORT_IPV6; vMBTCPPortSlaveSetNetOpt(mbs_opts->mbs_comm.ip_netif_ptr, ip_ver, proto, (char*)mbs_opts->mbs_comm.ip_addr); vMBTCPPortSlaveStartServerTask(); status = eMBEnable(); MB_SLAVE_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb TCP stack start failure, eMBEnable() returned (0x%x).", (uint32_t)status); // Set the mbcontroller start flag EventBits_t flag = xEventGroupSetBits(mbs_opts->mbs_event_group, (EventBits_t)MB_EVENT_STACK_STARTED); MB_SLAVE_CHECK((flag & MB_EVENT_STACK_STARTED), ESP_ERR_INVALID_STATE, "mb stack start event set error."); return ESP_OK; } // Modbus controller destroy function static esp_err_t mbc_tcp_slave_destroy(void) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; eMBErrorCode mb_error = MB_ENOERR; // Stop polling by clearing correspondent bit in the event group EventBits_t flag = xEventGroupClearBits(mbs_opts->mbs_event_group, (EventBits_t)MB_EVENT_STACK_STARTED); MB_SLAVE_CHECK((flag & MB_EVENT_STACK_STARTED), ESP_ERR_INVALID_STATE, "mb stack stop event failure."); // Disable and then destroy the Modbus stack mb_error = eMBDisable(); MB_SLAVE_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb stack disable failure."); (void)vTaskDelete(mbs_opts->mbs_task_handle); (void)vQueueDelete(mbs_opts->mbs_notification_queue_handle); (void)vEventGroupDelete(mbs_opts->mbs_event_group); (void)vMBTCPPortClose(); free(mbs_interface_ptr); vMBPortSetMode((UCHAR)MB_PORT_INACTIVE); mbs_interface_ptr = NULL; return ESP_OK; } esp_err_t mbc_tcp_slave_set_descriptor(const mb_register_area_descriptor_t descr_info) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_CHECK(((descr_info.type < MB_PARAM_COUNT) && (descr_info.type >= MB_PARAM_HOLDING)), ESP_ERR_INVALID_ARG, "mb incorrect modbus instance type = (0x%x).", (uint32_t)descr_info.type); MB_SLAVE_CHECK((descr_info.address != NULL), ESP_ERR_INVALID_ARG, "mb instance pointer is NULL."); MB_SLAVE_CHECK((descr_info.size >= MB_INST_MIN_SIZE) && (descr_info.size < (MB_INST_MAX_SIZE)), ESP_ERR_INVALID_ARG, "mb instance size is incorrect = (0x%x).", (uint32_t)descr_info.size); mbs_opts->mbs_area_descriptors[descr_info.type] = descr_info; return ESP_OK; } // Helper function to send parameter information to application task static esp_err_t send_param_info(mb_event_group_t par_type, uint16_t mb_offset, uint8_t* par_address, uint16_t par_size) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; esp_err_t error = ESP_FAIL; mb_param_info_t par_info; // Check if queue is not full the send parameter information par_info.type = par_type; par_info.size = par_size; par_info.address = par_address; par_info.time_stamp = get_time_stamp(); par_info.mb_offset = mb_offset; BaseType_t status = xQueueSend(mbs_opts->mbs_notification_queue_handle, &par_info, MB_PAR_INFO_TOUT); if (pdTRUE == status) { ESP_LOGD(MB_SLAVE_TAG, "Queue send parameter info (type, address, size): %d, 0x%.4x, %d", par_type, (uint32_t)par_address, par_size); error = ESP_OK; } else if (errQUEUE_FULL == status) { ESP_LOGD(MB_SLAVE_TAG, "Parameter queue is overflowed."); } return error; } // Helper function to send notification static esp_err_t send_param_access_notification(mb_event_group_t event) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; esp_err_t err = ESP_FAIL; mb_event_group_t bits = (mb_event_group_t)xEventGroupSetBits(mbs_opts->mbs_event_group, (EventBits_t)event); if (bits & event) { ESP_LOGD(MB_SLAVE_TAG, "The MB_REG_CHANGE_EVENT = 0x%.2x is set.", (uint8_t)event); err = ESP_OK; } return err; } // Blocking function to get event on parameter group change for application task static mb_event_group_t mbc_tcp_slave_check_event(mb_event_group_t group) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_ASSERT(mbs_opts->mbs_event_group != NULL); BaseType_t status = xEventGroupWaitBits(mbs_opts->mbs_event_group, (BaseType_t)group, pdTRUE , pdFALSE, portMAX_DELAY); return (mb_event_group_t)status; } // Function to get notification about parameter change from application task static esp_err_t mbc_tcp_slave_get_param_info(mb_param_info_t* reg_info, uint32_t timeout) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; esp_err_t err = ESP_ERR_TIMEOUT; MB_SLAVE_CHECK((mbs_opts->mbs_notification_queue_handle != NULL), ESP_ERR_INVALID_ARG, "mb queue handle is invalid."); MB_SLAVE_CHECK((reg_info != NULL), ESP_ERR_INVALID_ARG, "mb register information is invalid."); BaseType_t status = xQueueReceive(mbs_opts->mbs_notification_queue_handle, reg_info, pdMS_TO_TICKS(timeout)); if (status == pdTRUE) { err = ESP_OK; } return err; } /* ----------------------- Callback functions for Modbus stack ---------------------------------*/ // These are executed by modbus stack to read appropriate type of registers. // This is required to suppress warning when register start address is zero #pragma GCC diagnostic ignored "-Wtype-limits" // Callback function for reading of MB Input Registers eMBErrorCode eMBRegInputCBTcpSlave(UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_ASSERT(pucRegBuffer != NULL); USHORT usRegInputNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].size >> 1); // Number of input registers USHORT usInputRegStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].start_offset; // Get Modbus start address UCHAR* pucInputBuffer = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_INPUT].address; // Get instance address USHORT usRegs = usNRegs; eMBErrorCode eStatus = MB_ENOERR; USHORT iRegIndex; // If input or configuration parameters are incorrect then return an error to stack layer if ((usAddress >= usInputRegStart) && (pucInputBuffer != NULL) && (usNRegs >= 1) && ((usAddress + usRegs) <= (usInputRegStart + usRegInputNregs + 1)) && (usRegInputNregs >= 1)) { iRegIndex = (USHORT)(usAddress - usInputRegStart - 1); iRegIndex <<= 1; // register Address to byte address pucInputBuffer += iRegIndex; UCHAR* pucBufferStart = pucInputBuffer; while (usRegs > 0) { _XFER_2_RD(pucRegBuffer, pucInputBuffer); iRegIndex += 2; usRegs -= 1; } // Send access notification (void)send_param_access_notification(MB_EVENT_INPUT_REG_RD); // Send parameter info to application task (void)send_param_info(MB_EVENT_INPUT_REG_RD, (uint16_t)usAddress, (uint8_t*)pucBufferStart, (uint16_t)usNRegs); } else { eStatus = MB_ENOREG; } return eStatus; } // Callback function for reading of MB Holding Registers // Executed by stack when request to read/write holding registers is received eMBErrorCode eMBRegHoldingCBTcpSlave(UCHAR * pucRegBuffer, USHORT usAddress, USHORT usNRegs, eMBRegisterMode eMode) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_ASSERT(pucRegBuffer != NULL); USHORT usRegHoldingNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].size >> 1); USHORT usRegHoldingStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].start_offset; UCHAR* pucHoldingBuffer = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_HOLDING].address; eMBErrorCode eStatus = MB_ENOERR; USHORT iRegIndex; USHORT usRegs = usNRegs; // Check input and configuration parameters for correctness if ((usAddress >= usRegHoldingStart) && (pucHoldingBuffer != NULL) && ((usAddress + usRegs) <= (usRegHoldingStart + usRegHoldingNregs + 1)) && (usRegHoldingNregs >= 1) && (usNRegs >= 1)) { iRegIndex = (USHORT) (usAddress - usRegHoldingStart - 1); iRegIndex <<= 1; // register Address to byte address pucHoldingBuffer += iRegIndex; UCHAR* pucBufferStart = pucHoldingBuffer; switch (eMode) { case MB_REG_READ: while (usRegs > 0) { _XFER_2_RD(pucRegBuffer, pucHoldingBuffer); iRegIndex += 2; usRegs -= 1; }; // Send access notification (void)send_param_access_notification(MB_EVENT_HOLDING_REG_RD); // Send parameter info (void)send_param_info(MB_EVENT_HOLDING_REG_RD, (uint16_t)usAddress, (uint8_t*)pucBufferStart, (uint16_t)usNRegs); break; case MB_REG_WRITE: while (usRegs > 0) { _XFER_2_WR(pucHoldingBuffer, pucRegBuffer); pucHoldingBuffer += 2; iRegIndex += 2; usRegs -= 1; }; // Send access notification (void)send_param_access_notification(MB_EVENT_HOLDING_REG_WR); // Send parameter info (void)send_param_info(MB_EVENT_HOLDING_REG_WR, (uint16_t)usAddress, (uint8_t*)pucBufferStart, (uint16_t)usNRegs); break; } } else { eStatus = MB_ENOREG; } return eStatus; } // Callback function for reading of MB Coils Registers eMBErrorCode eMBRegCoilsCBTcpSlave(UCHAR* pucRegBuffer, USHORT usAddress, USHORT usNCoils, eMBRegisterMode eMode) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_ASSERT(NULL != pucRegBuffer); USHORT usRegCoilNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].size >> 1); // number of registers in storage area USHORT usRegCoilsStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].start_offset; // MB offset of coils registers UCHAR* pucRegCoilsBuf = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_COIL].address; eMBErrorCode eStatus = MB_ENOERR; USHORT iRegIndex; USHORT usCoils = usNCoils; usAddress--; // The address is already +1 if ((usAddress >= usRegCoilsStart) && (usRegCoilNregs >= 1) && ((usAddress + usCoils) <= (usRegCoilsStart + (usRegCoilNregs << 4) + 1)) && (pucRegCoilsBuf != NULL) && (usNCoils >= 1)) { iRegIndex = (USHORT) (usAddress - usRegCoilsStart); CHAR* pucCoilsDataBuf = (CHAR*)(pucRegCoilsBuf + (iRegIndex >> 3)); switch (eMode) { case MB_REG_READ: while (usCoils > 0) { UCHAR ucResult = xMBUtilGetBits((UCHAR*)pucRegCoilsBuf, iRegIndex, 1); xMBUtilSetBits(pucRegBuffer, iRegIndex - (usAddress - usRegCoilsStart), 1, ucResult); iRegIndex++; usCoils--; } // Send an event to notify application task about event (void)send_param_access_notification(MB_EVENT_COILS_RD); (void)send_param_info(MB_EVENT_COILS_RD, (uint16_t)usAddress, (uint8_t*)(pucCoilsDataBuf), (uint16_t)usNCoils); break; case MB_REG_WRITE: while (usCoils > 0) { UCHAR ucResult = xMBUtilGetBits(pucRegBuffer, iRegIndex - (usAddress - usRegCoilsStart), 1); xMBUtilSetBits((uint8_t*)pucRegCoilsBuf, iRegIndex, 1, ucResult); iRegIndex++; usCoils--; } // Send an event to notify application task about event (void)send_param_access_notification(MB_EVENT_COILS_WR); (void)send_param_info(MB_EVENT_COILS_WR, (uint16_t)usAddress, (uint8_t*)pucCoilsDataBuf, (uint16_t)usNCoils); break; } // switch ( eMode ) } else { // If the configuration or input parameters are incorrect then return error to stack eStatus = MB_ENOREG; } return eStatus; } // Callback function for reading of MB Discrete Input Registers eMBErrorCode eMBRegDiscreteCBTcpSlave(UCHAR* pucRegBuffer, USHORT usAddress, USHORT usNDiscrete) { MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; MB_SLAVE_ASSERT(pucRegBuffer != NULL); USHORT usRegDiscreteNregs = (USHORT)(mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].size >> 1); // number of registers in storage area USHORT usRegDiscreteStart = (USHORT)mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].start_offset; // MB offset of registers UCHAR* pucRegDiscreteBuf = (UCHAR*)mbs_opts->mbs_area_descriptors[MB_PARAM_DISCRETE].address; // the storage address eMBErrorCode eStatus = MB_ENOERR; USHORT iRegIndex, iRegBitIndex, iNReg; UCHAR* pucDiscreteInputBuf; iNReg = usNDiscrete / 8 + 1; pucDiscreteInputBuf = (UCHAR*) pucRegDiscreteBuf; // It already plus one in modbus function method. usAddress--; if ((usAddress >= usRegDiscreteStart) && (usRegDiscreteNregs >= 1) && (pucRegDiscreteBuf != NULL) && ((usAddress + usNDiscrete) <= (usRegDiscreteStart + (usRegDiscreteNregs * 16))) && (usNDiscrete >= 1)) { iRegIndex = (USHORT) (usAddress - usRegDiscreteStart) / 8; // Get register index in the buffer for bit number iRegBitIndex = (USHORT)(usAddress - usRegDiscreteStart) % 8; // Get bit index UCHAR* pucTempBuf = &pucDiscreteInputBuf[iRegIndex]; while (iNReg > 0) { *pucRegBuffer++ = xMBUtilGetBits(&pucDiscreteInputBuf[iRegIndex++], iRegBitIndex, 8); iNReg--; } pucRegBuffer--; // Last discrete usNDiscrete = usNDiscrete % 8; // Filling zero to high bit *pucRegBuffer = *pucRegBuffer << (8 - usNDiscrete); *pucRegBuffer = *pucRegBuffer >> (8 - usNDiscrete); // Send an event to notify application task about event (void)send_param_access_notification(MB_EVENT_DISCRETE_RD); (void)send_param_info(MB_EVENT_DISCRETE_RD, (uint16_t)usAddress, (uint8_t*)pucTempBuf, (uint16_t)usNDiscrete); } else { eStatus = MB_ENOREG; } return eStatus; } #pragma GCC diagnostic pop // require GCC // Initialization of Modbus controller esp_err_t mbc_tcp_slave_create(void** handler) { // Allocate space for options if (mbs_interface_ptr == NULL) { mbs_interface_ptr = malloc(sizeof(mb_slave_interface_t)); } MB_SLAVE_ASSERT(mbs_interface_ptr != NULL); mb_slave_options_t* mbs_opts = &mbs_interface_ptr->opts; mbs_opts->port_type = MB_PORT_TCP_SLAVE; // set interface port type vMBPortSetMode((UCHAR)MB_PORT_TCP_SLAVE); // Set default values of communication options mbs_opts->mbs_comm.ip_port = MB_TCP_DEFAULT_PORT; // Initialization of active context of the Modbus controller BaseType_t status = 0; // Parameter change notification queue mbs_opts->mbs_event_group = xEventGroupCreate(); MB_SLAVE_CHECK((mbs_opts->mbs_event_group != NULL), ESP_ERR_NO_MEM, "mb event group error."); // Parameter change notification queue mbs_opts->mbs_notification_queue_handle = xQueueCreate( MB_CONTROLLER_NOTIFY_QUEUE_SIZE, sizeof(mb_param_info_t)); MB_SLAVE_CHECK((mbs_opts->mbs_notification_queue_handle != NULL), ESP_ERR_NO_MEM, "mb notify queue creation error."); // Create Modbus controller task status = xTaskCreate((void*)&modbus_tcp_slave_task, "modbus_tcp_slave_task", MB_CONTROLLER_STACK_SIZE, NULL, MB_CONTROLLER_PRIORITY, &mbs_opts->mbs_task_handle); if (status != pdPASS) { vTaskDelete(mbs_opts->mbs_task_handle); MB_SLAVE_CHECK((status == pdPASS), ESP_ERR_NO_MEM, "mb controller task creation error, xTaskCreate() returns (0x%x).", (uint32_t)status); } // The task is created but handle is incorrect MB_SLAVE_ASSERT(mbs_opts->mbs_task_handle != NULL); // Initialization of interface pointers mbs_interface_ptr->init = mbc_tcp_slave_create; mbs_interface_ptr->destroy = mbc_tcp_slave_destroy; mbs_interface_ptr->setup = mbc_tcp_slave_setup; mbs_interface_ptr->start = mbc_tcp_slave_start; mbs_interface_ptr->check_event = mbc_tcp_slave_check_event; mbs_interface_ptr->get_param_info = mbc_tcp_slave_get_param_info; mbs_interface_ptr->set_descriptor = mbc_tcp_slave_set_descriptor; // Initialize stack callback function pointers mbs_interface_ptr->slave_reg_cb_discrete = eMBRegDiscreteCBTcpSlave; mbs_interface_ptr->slave_reg_cb_input = eMBRegInputCBTcpSlave; mbs_interface_ptr->slave_reg_cb_holding = eMBRegHoldingCBTcpSlave; mbs_interface_ptr->slave_reg_cb_coils = eMBRegCoilsCBTcpSlave; *handler = (void*)mbs_interface_ptr; return ESP_OK; }