// Copyright 2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "esp_system.h" #include "soc/spinlock.h" #include "soc/rtc.h" #include "esp_rom_sys.h" #include "esp_private/system_internal.h" #include "esp_time_impl.h" #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/rtc.h" #include "esp32/clk.h" #include "esp32/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/rtc.h" #include "esp32s2/clk.h" #include "esp32s2/rtc.h" #endif #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) \ || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \ || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) \ || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) #define WITH_RTC 1 #endif #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) \ || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \ || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) \ || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) #define WITH_FRC 1 #endif // Offset between FRC timer and the RTC. // Initialized after reset or light sleep. #if defined(WITH_RTC) && defined(WITH_FRC) uint64_t s_microseconds_offset; #endif #ifndef WITH_RTC static uint64_t s_boot_time; // when RTC is used to persist time, two RTC_STORE registers are used to store boot time instead #endif static spinlock_t s_time_lock = SPINLOCK_INITIALIZER; #if defined( WITH_FRC ) || defined( WITH_RTC ) uint64_t esp_time_impl_get_time_since_boot(void) { uint64_t microseconds = 0; #ifdef WITH_FRC #ifdef WITH_RTC microseconds = s_microseconds_offset + esp_system_get_time(); #else microseconds = esp_system_get_time(); #endif // WITH_RTC #elif defined(WITH_RTC) spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); microseconds = esp_rtc_get_time_us(); spinlock_release(&s_time_lock); #endif // WITH_FRC return microseconds; } uint64_t esp_time_impl_get_time(void) { uint64_t microseconds = 0; #if defined( WITH_FRC ) microseconds = esp_system_get_time(); #elif defined( WITH_RTC ) spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); microseconds = esp_rtc_get_time_us(); spinlock_release(&s_time_lock); #endif // WITH_FRC return microseconds; } #endif // defined( WITH_FRC ) || defined( WITH_RTC ) void esp_time_impl_set_boot_time(uint64_t time_us) { spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); #ifdef WITH_RTC REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff)); REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32)); #else s_boot_time = time_us; #endif spinlock_release(&s_time_lock); } uint64_t esp_clk_rtc_time(void) { #ifdef WITH_RTC return esp_rtc_get_time_us(); #else return 0; #endif } uint64_t esp_time_impl_get_boot_time(void) { uint64_t result; spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); #ifdef WITH_RTC result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32); #else result = s_boot_time; #endif spinlock_release(&s_time_lock); return result; } uint32_t esp_clk_slowclk_cal_get(void) { return REG_READ(RTC_SLOW_CLK_CAL_REG); } uint64_t esp_rtc_get_time_us(void) { const uint64_t ticks = rtc_time_get(); const uint32_t cal = esp_clk_slowclk_cal_get(); /* RTC counter result is up to 2^48, calibration factor is up to 2^24, * for a 32kHz clock. We need to calculate (assuming no overflow): * (ticks * cal) >> RTC_CLK_CAL_FRACT * * An overflow in the (ticks * cal) multiplication would cause time to * wrap around after approximately 13 days, which is probably not enough * for some applications. * Therefore multiplication is split into two terms, for the lower 32-bit * and the upper 16-bit parts of "ticks", i.e.: * ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT */ const uint64_t ticks_low = ticks & UINT32_MAX; const uint64_t ticks_high = ticks >> 32; return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT)); } void esp_clk_slowclk_cal_set(uint32_t new_cal) { #if defined(WITH_RTC) /* To force monotonic time values even when clock calibration value changes, * we adjust boot time, given current time and the new calibration value: * T = boot_time_old + cur_cal * ticks / 2^19 * T = boot_time_adj + new_cal * ticks / 2^19 * which results in: * boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19 */ const int64_t ticks = (int64_t) rtc_time_get(); const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG); int32_t cal_diff = (int32_t) (cur_cal - new_cal); int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT); uint64_t boot_time_adj = esp_time_impl_get_boot_time() + boot_time_diff; esp_time_impl_set_boot_time(boot_time_adj); #endif // WITH_RTC REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal); } void esp_set_time_from_rtc(void) { #if defined( WITH_FRC ) && defined( WITH_RTC ) // initialize time from RTC clock s_microseconds_offset = esp_rtc_get_time_us() - esp_system_get_time(); #endif // WITH_FRC && WITH_RTC } void esp_sync_counters_rtc_and_frc(void) { #if defined( WITH_FRC ) && defined( WITH_RTC ) struct timeval tv; gettimeofday(&tv, NULL); settimeofday(&tv, NULL); int64_t s_microseconds_offset_cur = esp_rtc_get_time_us() - esp_system_get_time(); esp_time_impl_set_boot_time(esp_time_impl_get_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur)); #endif } void esp_time_impl_init(void) { esp_set_time_from_rtc(); }