// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_image_format.h" #include "flash_qio_mode.h" #include "bootloader_init.h" #include "bootloader_clock.h" #include "bootloader_common.h" #include "bootloader_flash_config.h" #include "bootloader_mem.h" #include "bootloader_console.h" #include "soc/cpu.h" #include "soc/dport_reg.h" #include "soc/efuse_reg.h" #include "soc/gpio_periph.h" #include "soc/gpio_sig_map.h" #include "soc/io_mux_reg.h" #include "soc/rtc.h" #include "soc/spi_periph.h" #include "esp32/rom/cache.h" #include "esp32/rom/efuse.h" #include "esp32/rom/ets_sys.h" #include "esp32/rom/gpio.h" #include "esp32/rom/spi_flash.h" #include "esp32/rom/rtc.h" #include "esp32/rom/uart.h" static const char *TAG = "boot.esp32"; #define FLASH_CLK_IO SPI_CLK_GPIO_NUM #define FLASH_CS_IO SPI_CS0_GPIO_NUM #define FLASH_SPIQ_IO SPI_Q_GPIO_NUM #define FLASH_SPID_IO SPI_D_GPIO_NUM #define FLASH_SPIWP_IO SPI_WP_GPIO_NUM #define FLASH_SPIHD_IO SPI_HD_GPIO_NUM void bootloader_configure_spi_pins(int drv) { uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG); uint32_t pkg_ver = chip_ver & 0x7; if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) { // For ESP32D2WD the SPI pins are already configured // flash clock signal should come from IO MUX. PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) { // For ESP32PICOD2 the SPI pins are already configured // flash clock signal should come from IO MUX. PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) { // For ESP32PICOD4 the SPI pins are already configured // flash clock signal should come from IO MUX. PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); } else { const uint32_t spiconfig = ets_efuse_get_spiconfig(); if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) { gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0); gpio_matrix_out(FLASH_SPIQ_IO, SPIQ_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPIQ_IO, SPIQ_IN_IDX, 0); gpio_matrix_out(FLASH_SPID_IO, SPID_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPID_IO, SPID_IN_IDX, 0); gpio_matrix_out(FLASH_SPIWP_IO, SPIWP_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPIWP_IO, SPIWP_IN_IDX, 0); gpio_matrix_out(FLASH_SPIHD_IO, SPIHD_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPIHD_IO, SPIHD_IN_IDX, 0); //select pin function gpio PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, PIN_FUNC_GPIO); // flash clock signal should come from IO MUX. // set drive ability for clock PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); #if CONFIG_SPIRAM_TYPE_ESPPSRAM32 || CONFIG_SPIRAM_TYPE_ESPPSRAM64 uint32_t flash_id = g_rom_flashchip.device_id; if (flash_id == FLASH_ID_GD25LQ32C) { // Set drive ability for 1.8v flash in 80Mhz. SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA0_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA1_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA2_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA3_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CMD_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, 3, FUN_DRV_S); } #endif } } } static void bootloader_reset_mmu(void) { /* completely reset MMU in case serial bootloader was running */ Cache_Read_Disable(0); #if !CONFIG_FREERTOS_UNICORE Cache_Read_Disable(1); #endif Cache_Flush(0); #if !CONFIG_FREERTOS_UNICORE Cache_Flush(1); #endif mmu_init(0); #if !CONFIG_FREERTOS_UNICORE /* The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are necessary to work around a hardware bug. */ DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); mmu_init(1); DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); #endif /* normal ROM boot exits with DROM0 cache unmasked, but serial bootloader exits with it masked. */ DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0); #if !CONFIG_FREERTOS_UNICORE DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0); #endif } static esp_err_t bootloader_check_rated_cpu_clock(void) { int rated_freq = bootloader_clock_get_rated_freq_mhz(); if (rated_freq < CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ) { ESP_LOGE(TAG, "Chip CPU frequency rated for %dMHz, configured for %dMHz. Modify CPU frequency in menuconfig", rated_freq, CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ); return ESP_FAIL; } return ESP_OK; } static void update_flash_config(const esp_image_header_t *bootloader_hdr) { uint32_t size; switch (bootloader_hdr->spi_size) { case ESP_IMAGE_FLASH_SIZE_1MB: size = 1; break; case ESP_IMAGE_FLASH_SIZE_2MB: size = 2; break; case ESP_IMAGE_FLASH_SIZE_4MB: size = 4; break; case ESP_IMAGE_FLASH_SIZE_8MB: size = 8; break; case ESP_IMAGE_FLASH_SIZE_16MB: size = 16; break; default: size = 2; } Cache_Read_Disable(0); // Set flash chip size esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff); // TODO: set mode // TODO: set frequency Cache_Flush(0); Cache_Read_Enable(0); } static void print_flash_info(const esp_image_header_t *bootloader_hdr) { ESP_LOGD(TAG, "magic %02x", bootloader_hdr->magic); ESP_LOGD(TAG, "segments %02x", bootloader_hdr->segment_count); ESP_LOGD(TAG, "spi_mode %02x", bootloader_hdr->spi_mode); ESP_LOGD(TAG, "spi_speed %02x", bootloader_hdr->spi_speed); ESP_LOGD(TAG, "spi_size %02x", bootloader_hdr->spi_size); const char *str; switch (bootloader_hdr->spi_speed) { case ESP_IMAGE_SPI_SPEED_40M: str = "40MHz"; break; case ESP_IMAGE_SPI_SPEED_26M: str = "26.7MHz"; break; case ESP_IMAGE_SPI_SPEED_20M: str = "20MHz"; break; case ESP_IMAGE_SPI_SPEED_80M: str = "80MHz"; break; default: str = "20MHz"; break; } ESP_LOGI(TAG, "SPI Speed : %s", str); /* SPI mode could have been set to QIO during boot already, so test the SPI registers not the flash header */ uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0)); if (spi_ctrl & SPI_FREAD_QIO) { str = "QIO"; } else if (spi_ctrl & SPI_FREAD_QUAD) { str = "QOUT"; } else if (spi_ctrl & SPI_FREAD_DIO) { str = "DIO"; } else if (spi_ctrl & SPI_FREAD_DUAL) { str = "DOUT"; } else if (spi_ctrl & SPI_FASTRD_MODE) { str = "FAST READ"; } else { str = "SLOW READ"; } ESP_LOGI(TAG, "SPI Mode : %s", str); switch (bootloader_hdr->spi_size) { case ESP_IMAGE_FLASH_SIZE_1MB: str = "1MB"; break; case ESP_IMAGE_FLASH_SIZE_2MB: str = "2MB"; break; case ESP_IMAGE_FLASH_SIZE_4MB: str = "4MB"; break; case ESP_IMAGE_FLASH_SIZE_8MB: str = "8MB"; break; case ESP_IMAGE_FLASH_SIZE_16MB: str = "16MB"; break; default: str = "2MB"; break; } ESP_LOGI(TAG, "SPI Flash Size : %s", str); } static void IRAM_ATTR bootloader_init_flash_configure(void) { bootloader_flash_gpio_config(&bootloader_image_hdr); bootloader_flash_dummy_config(&bootloader_image_hdr); bootloader_flash_cs_timing_config(); } static esp_err_t bootloader_init_spi_flash(void) { bootloader_init_flash_configure(); #ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH const uint32_t spiconfig = ets_efuse_get_spiconfig(); if (spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) { ESP_LOGE(TAG, "SPI flash pins are overridden. Enable CONFIG_SPI_FLASH_ROM_DRIVER_PATCH in menuconfig"); return ESP_FAIL; } #endif esp_rom_spiflash_unlock(); #if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT bootloader_enable_qio_mode(); #endif print_flash_info(&bootloader_image_hdr); update_flash_config(&bootloader_image_hdr); return ESP_OK; } static void wdt_reset_cpu0_info_enable(void) { //We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1. DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE); DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE); } static void wdt_reset_info_dump(int cpu) { uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0, lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0; const char *cpu_name = cpu ? "APP" : "PRO"; if (cpu == 0) { stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG); pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG); inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG); dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG); data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG); pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG); lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG); lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG); lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG); } else { #if !CONFIG_FREERTOS_UNICORE stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG); pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG); inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG); dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG); data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG); pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG); lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG); lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG); lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG); #endif } if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 && DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) { ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc); } else { ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc); } ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat); ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata); } static void bootloader_check_wdt_reset(void) { int wdt_rst = 0; RESET_REASON rst_reas[2]; rst_reas[0] = rtc_get_reset_reason(0); rst_reas[1] = rtc_get_reset_reason(1); if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET || rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) { ESP_LOGW(TAG, "PRO CPU has been reset by WDT."); wdt_rst = 1; } if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET || rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) { ESP_LOGW(TAG, "APP CPU has been reset by WDT."); wdt_rst = 1; } if (wdt_rst) { // if reset by WDT dump info from trace port wdt_reset_info_dump(0); #if !CONFIG_FREERTOS_UNICORE wdt_reset_info_dump(1); #endif } wdt_reset_cpu0_info_enable(); } void abort(void) { #if !CONFIG_ESP_SYSTEM_PANIC_SILENT_REBOOT ets_printf("abort() was called at PC 0x%08x\r\n", (intptr_t)__builtin_return_address(0) - 3); #endif if (esp_cpu_in_ocd_debug_mode()) { __asm__("break 0,0"); } while (1) { } } esp_err_t bootloader_init(void) { esp_err_t ret = ESP_OK; bootloader_init_mem(); // check that static RAM is after the stack #ifndef NDEBUG { assert(&_bss_start <= &_bss_end); assert(&_data_start <= &_data_end); int *sp = get_sp(); assert(sp < &_bss_start); assert(sp < &_data_start); } #endif // clear bss section bootloader_clear_bss_section(); // bootst up vddsdio bootloader_common_vddsdio_configure(); // reset MMU bootloader_reset_mmu(); // check rated CPU clock if ((ret = bootloader_check_rated_cpu_clock()) != ESP_OK) { goto err; } // config clock bootloader_clock_configure(); // initialize uart console, from now on, we can use esp_log bootloader_console_init(); /* print 2nd bootloader banner */ bootloader_print_banner(); // update flash ID bootloader_flash_update_id(); // read bootloader header if ((ret = bootloader_read_bootloader_header()) != ESP_OK) { goto err; } // read chip revision and check if it's compatible to bootloader if ((ret = bootloader_check_bootloader_validity()) != ESP_OK) { goto err; } // initialize spi flash if ((ret = bootloader_init_spi_flash()) != ESP_OK) { goto err; } // check whether a WDT reset happend bootloader_check_wdt_reset(); // config WDT bootloader_config_wdt(); // enable RNG early entropy source bootloader_enable_random(); err: return ret; }