// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_types.h" #include "esp_attr.h" #include "esp_intr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "esp_clk.h" #include "malloc.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/xtensa_api.h" #include "freertos/task.h" #include "freertos/ringbuf.h" #include "soc/dport_reg.h" #include "soc/uart_struct.h" #include "driver/uart.h" #include "driver/gpio.h" #include "driver/uart_select.h" #include "sdkconfig.h" #ifdef CONFIG_UART_ISR_IN_IRAM #define UART_ISR_ATTR IRAM_ATTR #else #define UART_ISR_ATTR #endif #define XOFF (char)0x13 #define XON (char)0x11 static const char* UART_TAG = "uart"; #define UART_CHECK(a, str, ret_val) \ if (!(a)) { \ ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } #define UART_EMPTY_THRESH_DEFAULT (10) #define UART_FULL_THRESH_DEFAULT (120) #define UART_TOUT_THRESH_DEFAULT (10) #define UART_CLKDIV_FRAG_BIT_WIDTH (3) #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<uart_mode == mode)) typedef struct { uart_event_type_t type; /*!< UART TX data type */ struct { int brk_len; size_t size; uint8_t data[0]; } tx_data; } uart_tx_data_t; typedef struct { int wr; int rd; int len; int* data; } uart_pat_rb_t; typedef struct { uart_port_t uart_num; /*!< UART port number*/ int queue_size; /*!< UART event queue size*/ QueueHandle_t xQueueUart; /*!< UART queue handler*/ intr_handle_t intr_handle; /*!< UART interrupt handle*/ uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */ bool coll_det_flg; /*!< UART collision detection flag */ //rx parameters int rx_buffered_len; /*!< UART cached data length */ SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/ int rx_buf_size; /*!< RX ring buffer size */ RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/ bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */ int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/ uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/ uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/ uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/ uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */ uart_pat_rb_t rx_pattern_pos; //tx parameters SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/ SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/ SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/ SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/ int tx_buf_size; /*!< TX ring buffer size */ RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/ bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/ uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/ uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/ uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/ uint32_t tx_len_cur; uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */ uint8_t tx_brk_len; /*!< TX break signal cycle length/number */ uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/ uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */ } uart_obj_t; static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0}; /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */ static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2}; static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED}; static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED; esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->conf0.bit_num = data_bit; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); *(data_bit) = UART[uart_num]->conf0.bit_num; return ESP_OK; } esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); //workaround for hardware bug, when uart stop bit set as 2-bit mode. if (stop_bit == UART_STOP_BITS_2) { stop_bit = UART_STOP_BITS_1; UART[uart_num]->rs485_conf.dl1_en = 1; } else { UART[uart_num]->rs485_conf.dl1_en = 0; } UART[uart_num]->conf0.stop_bit_num = stop_bit; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); //workaround for hardware bug, when uart stop bit set as 2-bit mode. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) { (*stop_bit) = UART_STOP_BITS_2; } else { (*stop_bit) = UART[uart_num]->conf0.stop_bit_num; } return ESP_OK; } esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->conf0.parity = parity_mode & 0x1; UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); int val = UART[uart_num]->conf0.val; if(val & UART_PARITY_EN_M) { if(val & UART_PARITY_M) { (*parity_mode) = UART_PARITY_ODD; } else { (*parity_mode) = UART_PARITY_EVEN; } } else { (*parity_mode) = UART_PARITY_DISABLE; } return ESP_OK; } esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); esp_err_t ret = ESP_OK; UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); int uart_clk_freq; if (UART[uart_num]->conf0.tick_ref_always_on == 0) { /* this UART has been configured to use REF_TICK */ uart_clk_freq = REF_CLK_FREQ; } else { uart_clk_freq = esp_clk_apb_freq(); } uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate); if (clk_div < 16) { /* baud rate is too high for this clock frequency */ ret = ESP_ERR_INVALID_ARG; } else { UART[uart_num]->clk_div.div_int = clk_div >> 4; UART[uart_num]->clk_div.div_frag = clk_div & 0xf; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ret; } esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); uint32_t uart_clk_freq = esp_clk_apb_freq(); if(UART[uart_num]->conf0.tick_ref_always_on == 0) { uart_clk_freq = REF_CLK_FREQ; } (*baudrate) = ((uart_clk_freq) << 4) / clk_div; return ESP_OK; } esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK); SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL); UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0; UART[uart_num]->flow_conf.xonoff_del = enable?1:0; UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon; UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff; UART[uart_num]->swfc_conf.xon_char = XON; UART[uart_num]->swfc_conf.xoff_char = XOFF; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL); UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); if(flow_ctrl & UART_HW_FLOWCTRL_RTS) { UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh; UART[uart_num]->conf1.rx_flow_en = 1; } else { UART[uart_num]->conf1.rx_flow_en = 0; } if(flow_ctrl & UART_HW_FLOWCTRL_CTS) { UART[uart_num]->conf0.tx_flow_en = 1; } else { UART[uart_num]->conf0.tx_flow_en = 0; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE; if(UART[uart_num]->conf1.rx_flow_en) { val |= UART_HW_FLOWCTRL_RTS; } if(UART[uart_num]->conf0.tx_flow_en) { val |= UART_HW_FLOWCTRL_CTS; } (*flow_ctrl) = val; return ESP_OK; } static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); //Due to hardware issue, we can not use fifo_rst to reset uart fifo. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <> v2.6 or later. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) { READ_PERI_REG(UART_FIFO_REG(uart_num)); } return ESP_OK; } esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); //intr_clr register is write-only UART[uart_num]->int_clr.val = clr_mask; return ESP_OK; } esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask); SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask) { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask); UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); } static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask) { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask); SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask); UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); } static esp_err_t uart_pattern_link_free(uart_port_t uart_num) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) { int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data; UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_pattern_pos.data = NULL; p_uart_obj[uart_num]->rx_pattern_pos.wr = 0; p_uart_obj[uart_num]->rx_pattern_pos.rd = 0; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); free(pdata); } return ESP_OK; } static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); esp_err_t ret = ESP_OK; UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int next = p_pos->wr + 1; if (next >= p_pos->len) { next = 0; } if (next == p_pos->rd) { ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full."); ret = ESP_FAIL; } else { p_pos->data[p_pos->wr] = pos; p_pos->wr = next; ret = ESP_OK; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ret; } static esp_err_t uart_pattern_dequeue(uart_port_t uart_num) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) { return ESP_ERR_INVALID_STATE; } else { esp_err_t ret = ESP_OK; UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; if (p_pos->rd == p_pos->wr) { ret = ESP_FAIL; } else { p_pos->rd++; } if (p_pos->rd >= p_pos->len) { p_pos->rd = 0; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ret; } } static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int rd = p_pos->rd; while(rd != p_pos->wr) { p_pos->data[rd] -= diff_len; int rd_rec = rd; rd ++; if (rd >= p_pos->len) { rd = 0; } if (p_pos->data[rd_rec] < 0) { p_pos->rd = rd; } } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } int uart_pattern_pop_pos(uart_port_t uart_num) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int pos = -1; if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) { pos = pat_pos->data[pat_pos->rd]; uart_pattern_dequeue(uart_num); } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return pos; } int uart_pattern_get_pos(uart_port_t uart_num) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int pos = -1; if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) { pos = pat_pos->data[pat_pos->rd]; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return pos; } esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE); int* pdata = (int*) malloc(queue_length * sizeof(int)); if(pdata == NULL) { return ESP_ERR_NO_MEM; } UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data; p_uart_obj[uart_num]->rx_pattern_pos.data = pdata; p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length; p_uart_obj[uart_num]->rx_pattern_pos.rd = 0; p_uart_obj[uart_num]->rx_pattern_pos.wr = 0; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); free(ptmp); return ESP_OK; } esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL); UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL); UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL); UART[uart_num]->at_cmd_char.data = pattern_chr; UART[uart_num]->at_cmd_char.char_num = chr_num; UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout; UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle; UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle; return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M); } esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num) { return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M); } esp_err_t uart_enable_rx_intr(uart_port_t uart_num) { return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA); } esp_err_t uart_disable_rx_intr(uart_port_t uart_num) { return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA); } esp_err_t uart_disable_tx_intr(uart_port_t uart_num) { return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA); } esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->int_clr.txfifo_empty = 1; UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V; UART[uart_num]->int_ena.txfifo_empty = enable & 0x1; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle) { int ret; UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); switch(uart_num) { case UART_NUM_1: ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); break; case UART_NUM_2: ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); break; case UART_NUM_0: default: ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); break; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ret; } esp_err_t uart_isr_free(uart_port_t uart_num) { esp_err_t ret; UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG; UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle); p_uart_obj[uart_num]->intr_handle=NULL; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ret; } //internal signal can be output to multiple GPIO pads //only one GPIO pad can connect with input signal esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL); UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL); UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL); UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL); int tx_sig, rx_sig, rts_sig, cts_sig; switch(uart_num) { case UART_NUM_0: tx_sig = U0TXD_OUT_IDX; rx_sig = U0RXD_IN_IDX; rts_sig = U0RTS_OUT_IDX; cts_sig = U0CTS_IN_IDX; break; case UART_NUM_1: tx_sig = U1TXD_OUT_IDX; rx_sig = U1RXD_IN_IDX; rts_sig = U1RTS_OUT_IDX; cts_sig = U1CTS_IN_IDX; break; case UART_NUM_2: tx_sig = U2TXD_OUT_IDX; rx_sig = U2RXD_IN_IDX; rts_sig = U2RTS_OUT_IDX; cts_sig = U2CTS_IN_IDX; break; case UART_NUM_MAX: default: tx_sig = U0TXD_OUT_IDX; rx_sig = U0RXD_IN_IDX; rts_sig = U0RTS_OUT_IDX; cts_sig = U0CTS_IN_IDX; break; } if(tx_io_num >= 0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO); gpio_set_level(tx_io_num, 1); gpio_matrix_out(tx_io_num, tx_sig, 0, 0); } if(rx_io_num >= 0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO); gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY); gpio_set_direction(rx_io_num, GPIO_MODE_INPUT); gpio_matrix_in(rx_io_num, rx_sig, 0); } if(rts_io_num >= 0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO); gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT); gpio_matrix_out(rts_io_num, rts_sig, 0, 0); } if(cts_io_num >= 0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO); gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY); gpio_set_direction(cts_io_num, GPIO_MODE_INPUT); gpio_matrix_in(cts_io_num, cts_sig, 0); } return ESP_OK; } esp_err_t uart_set_rts(uart_port_t uart_num, int level) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->conf0.sw_rts = level & 0x1; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_set_dtr(uart_port_t uart_num, int level) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->conf0.sw_dtr = level & 0x1; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->idle_conf.tx_idle_num = idle_num; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } static periph_module_t get_periph_module(uart_port_t uart_num) { periph_module_t periph_module = PERIPH_UART0_MODULE; if (uart_num == UART_NUM_0) { periph_module = PERIPH_UART0_MODULE; } else if (uart_num == UART_NUM_1) { periph_module = PERIPH_UART1_MODULE; } else if (uart_num == UART_NUM_2) { periph_module = PERIPH_UART2_MODULE; } else { assert(0 && "uart_num error"); } return periph_module; } esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config) { esp_err_t r; UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_config), "param null", ESP_FAIL); periph_module_t periph_module = get_periph_module(uart_num); if (uart_num != CONFIG_CONSOLE_UART_NUM) { periph_module_reset(periph_module); } periph_module_enable(periph_module); r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh); if (r != ESP_OK) return r; UART[uart_num]->conf0.val = (uart_config->parity << UART_PARITY_S) | (uart_config->data_bits << UART_BIT_NUM_S) | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0) | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M); r = uart_set_baudrate(uart_num, uart_config->baud_rate); if (r != ESP_OK) return r; r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT); if (r != ESP_OK) return r; r = uart_set_stop_bits(uart_num, uart_config->stop_bits); //A hardware reset does not reset the fifo, //so we need to reset the fifo manually. uart_reset_rx_fifo(uart_num); return r; } esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((intr_conf), "param null", ESP_FAIL); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->int_clr.val = UART_INTR_MASK; if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) { //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH) if(UART[uart_num]->conf0.tick_ref_always_on == 0) { UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT); } else { UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh; } UART[uart_num]->conf1.rx_tout_en = 1; } else { UART[uart_num]->conf1.rx_tout_en = 0; } if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) { UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh; } if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) { UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh; } UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num) { int cnt = 0; int len = length; while (len >= 0) { if (buf[len] == pat_chr) { cnt++; } else { cnt = 0; } if (cnt >= pat_num) { break; } len --; } return len; } //internal isr handler for default driver code. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param) { uart_obj_t *p_uart = (uart_obj_t*) param; uint8_t uart_num = p_uart->uart_num; uart_dev_t* uart_reg = UART[uart_num]; int rx_fifo_len = 0; uint8_t buf_idx = 0; uint32_t uart_intr_status = 0; uart_event_t uart_event; portBASE_TYPE HPTaskAwoken = 0; static uint8_t pat_flg = 0; while(1) { uart_intr_status = uart_reg->int_st.val; // The `continue statement` may cause the interrupt to loop infinitely // we exit the interrupt here if(uart_intr_status == 0) { break; } uart_event.type = UART_EVENT_MAX; if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) { uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M); uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M); if(p_uart->tx_waiting_brk) { continue; } //TX semaphore will only be used when tx_buf_size is zero. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) { p_uart->tx_waiting_fifo = false; xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken); } else { //We don't use TX ring buffer, because the size is zero. if(p_uart->tx_buf_size == 0) { continue; } int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt; bool en_tx_flg = false; //We need to put a loop here, in case all the buffer items are very short. //That would cause a watch_dog reset because empty interrupt happens so often. //Although this is a loop in ISR, this loop will execute at most 128 turns. while(tx_fifo_rem) { if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) { size_t size; p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size); if(p_uart->tx_head) { //The first item is the data description //Get the first item to get the data information if(p_uart->tx_len_tot == 0) { p_uart->tx_ptr = NULL; p_uart->tx_len_tot = p_uart->tx_head->tx_data.size; if(p_uart->tx_head->type == UART_DATA_BREAK) { p_uart->tx_brk_flg = 1; p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len; } //We have saved the data description from the 1st item, return buffer. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken); }else if(p_uart->tx_ptr == NULL) { //Update the TX item pointer, we will need this to return item to buffer. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head; en_tx_flg = true; p_uart->tx_len_cur = size; } } else { //Can not get data from ring buffer, return; break; } } if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) { //To fill the TX FIFO. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur; // Set RS485 RTS pin before transmission if the half duplex mode is enabled if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_reg->conf0.sw_rts = 0; uart_reg->int_ena.tx_done = 1; UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); } for (buf_idx = 0; buf_idx < send_len; buf_idx++) { WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff); } p_uart->tx_len_tot -= send_len; p_uart->tx_len_cur -= send_len; tx_fifo_rem -= send_len; if (p_uart->tx_len_cur == 0) { //Return item to ring buffer. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken); p_uart->tx_head = NULL; p_uart->tx_ptr = NULL; //Sending item done, now we need to send break if there is a record. //Set TX break signal after FIFO is empty if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_reg->int_ena.tx_brk_done = 0; uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len; uart_reg->conf0.txd_brk = 1; uart_reg->int_clr.tx_brk_done = 1; uart_reg->int_ena.tx_brk_done = 1; UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); p_uart->tx_waiting_brk = 1; //do not enable TX empty interrupt en_tx_flg = false; } else { //enable TX empty interrupt en_tx_flg = true; } } else { //enable TX empty interrupt en_tx_flg = true; } } } if (en_tx_flg) { uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M); uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M); } } } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M) || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) ) { rx_fifo_len = uart_reg->status.rxfifo_cnt; typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status; // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer. // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo. if (rx_status.wr_addr > rx_status.rd_addr) { rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr; } else if (rx_status.wr_addr < rx_status.rd_addr) { rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr; } else { rx_fifo_len = rx_fifo_len > 0 ? 128 : 0; } if(pat_flg == 1) { uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M; pat_flg = 0; } if (p_uart->rx_buffer_full_flg == false) { //We have to read out all data in RX FIFO to clear the interrupt signal for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) { p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte; } uint8_t pat_chr = uart_reg->at_cmd_char.data; int pat_num = uart_reg->at_cmd_char.char_num; int pat_idx = -1; //Get the buffer from the FIFO if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) { uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M); uart_event.type = UART_PATTERN_DET; uart_event.size = rx_fifo_len; pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num); } else { //After Copying the Data From FIFO ,Clear intr_status uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M); uart_event.type = UART_DATA; uart_event.size = rx_fifo_len; UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); } p_uart->rx_stash_len = rx_fifo_len; //If we fail to push data to ring buffer, we will have to stash the data, and send next time. //Mainly for applications that uses flow control or small ring buffer. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) { p_uart->rx_buffer_full_flg = true; uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M); if (uart_event.type == UART_PATTERN_DET) { if (rx_fifo_len < pat_num) { //some of the characters are read out in last interrupt uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len)); } else { uart_pattern_enqueue(uart_num, pat_idx <= -1 ? //can not find the pattern in buffer, p_uart->rx_buffered_len + p_uart->rx_stash_len : // find the pattern in buffer p_uart->rx_buffered_len + pat_idx); } if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) { ESP_EARLY_LOGV(UART_TAG, "UART event queue full"); } } uart_event.type = UART_BUFFER_FULL; } else { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) { if (rx_fifo_len < pat_num) { //some of the characters are read out in last interrupt uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len)); } else if(pat_idx >= 0) { // find pattern in statsh buffer. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx); } } p_uart->rx_buffered_len += p_uart->rx_stash_len; UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); } } else { uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M); uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M); if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) { uart_reg->int_clr.at_cmd_char_det = 1; uart_event.type = UART_PATTERN_DET; uart_event.size = rx_fifo_len; pat_flg = 1; } } } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) { // When fifo overflows, we reset the fifo. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_reset_rx_fifo(uart_num); uart_reg->int_clr.rxfifo_ovf = 1; UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_event.type = UART_FIFO_OVF; UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) { uart_reg->int_clr.brk_det = 1; uart_event.type = UART_BREAK; } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) { uart_reg->int_clr.frm_err = 1; uart_event.type = UART_FRAME_ERR; UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) { uart_reg->int_clr.parity_err = 1; uart_event.type = UART_PARITY_ERR; UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_reg->conf0.txd_brk = 0; uart_reg->int_ena.tx_brk_done = 0; uart_reg->int_clr.tx_brk_done = 1; if(p_uart->tx_brk_flg == 1) { uart_reg->int_ena.txfifo_empty = 1; } UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); if(p_uart->tx_brk_flg == 1) { p_uart->tx_brk_flg = 0; p_uart->tx_waiting_brk = 0; } else { xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken); } } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) { uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M); uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M); } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) { uart_reg->int_clr.at_cmd_char_det = 1; uart_event.type = UART_PATTERN_DET; } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M) || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA) || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) { // RS485 collision or frame error interrupt triggered uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M); UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_reset_rx_fifo(uart_num); // Set collision detection flag p_uart_obj[uart_num]->coll_det_flg = true; UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_event.type = UART_EVENT_MAX; } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) { uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M); uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M); // If RS485 half duplex mode is enable then reset FIFO and // reset RTS pin to start receiver driver if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) { UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset uart_reg->conf0.sw_rts = 1; UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); } xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken); } else { uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/ uart_event.type = UART_EVENT_MAX; } if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) { if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) { ESP_EARLY_LOGV(UART_TAG, "UART event queue full"); } } } if(HPTaskAwoken == pdTRUE) { portYIELD_FROM_ISR(); } } /**************************************************************/ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); BaseType_t res; portTickType ticks_start = xTaskGetTickCount(); //Take tx_mux res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait); if(res == pdFALSE) { return ESP_ERR_TIMEOUT; } xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0); typeof(UART0.status) status = UART[uart_num]->status; //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) { xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_OK; } uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M); TickType_t ticks_end = xTaskGetTickCount(); if (ticks_end - ticks_start > ticks_to_wait) { ticks_to_wait = 0; } else { ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start); } //take 2nd tx_done_sem, wait given from ISR res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait); if(res == pdFALSE) { uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M); xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_ERR_TIMEOUT; } xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_OK; } static esp_err_t uart_set_break(uart_port_t uart_num, int break_num) { UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->idle_conf.tx_brk_num = break_num; UART[uart_num]->conf0.txd_brk = 1; UART[uart_num]->int_clr.tx_brk_done = 1; UART[uart_num]->int_ena.tx_brk_done = 1; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } //Fill UART tx_fifo and return a number, //This function by itself is not thread-safe, always call from within a muxed section. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len) { uint8_t i = 0; uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt; uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt); uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len); // Set the RTS pin if RS485 mode is enabled if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) { UART[uart_num]->conf0.sw_rts = 0; UART[uart_num]->int_ena.tx_done = 1; } for (i = 0; i < copy_cnt; i++) { WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]); } return copy_cnt; } int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK(buffer, "buffer null", (-1)); if(len == 0) { return 0; } xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len); xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return tx_len; } static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len) { if(size == 0) { return 0; } size_t original_size = size; //lock for uart_tx xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); p_uart_obj[uart_num]->coll_det_flg = false; if(p_uart_obj[uart_num]->tx_buf_size > 0) { int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf); int offset = 0; uart_tx_data_t evt; evt.tx_data.size = size; evt.tx_data.brk_len = brk_len; if(brk_en) { evt.type = UART_DATA_BREAK; } else { evt.type = UART_DATA; } xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY); while(size > 0) { int send_size = size > max_size / 2 ? max_size / 2 : size; xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY); size -= send_size; offset += send_size; uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); } } else { while(size) { //semaphore for tx_fifo available if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) { size_t sent = uart_fill_fifo(uart_num, (char*) src, size); if(sent < size) { p_uart_obj[uart_num]->tx_waiting_fifo = true; uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); } size -= sent; src += sent; } } if(brk_en) { uart_set_break(uart_num, brk_len); xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY); } xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem); } xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return original_size; } int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1)); UART_CHECK(src, "buffer null", (-1)); return uart_tx_all(uart_num, src, size, 0, 0); } int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK((size > 0), "uart size error", (-1)); UART_CHECK((src), "uart data null", (-1)); UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1)); return uart_tx_all(uart_num, src, size, 1, brk_len); } static bool uart_check_buf_full(uart_port_t uart_num) { if(p_uart_obj[uart_num]->rx_buffer_full_flg) { BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); if(res == pdTRUE) { UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num); return true; } } return false; } int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((buf), "uart data null", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); uint8_t* data = NULL; size_t size; size_t copy_len = 0; int len_tmp; if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) { return -1; } while(length) { if(p_uart_obj[uart_num]->rx_cur_remain == 0) { data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait); if(data) { p_uart_obj[uart_num]->rx_head_ptr = data; p_uart_obj[uart_num]->rx_ptr = data; p_uart_obj[uart_num]->rx_cur_remain = size; } else { //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time, //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty //to solve the possible asynchronous issues. if(uart_check_buf_full(uart_num)) { //This condition will never be true if `uart_read_bytes` //and `uart_rx_intr_handler_default` are scheduled on the same core. continue; } else { xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); return copy_len; } } } if(p_uart_obj[uart_num]->rx_cur_remain > length) { len_tmp = length; } else { len_tmp = p_uart_obj[uart_num]->rx_cur_remain; } memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_buffered_len -= len_tmp; uart_pattern_queue_update(uart_num, len_tmp); p_uart_obj[uart_num]->rx_ptr += len_tmp; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_cur_remain -= len_tmp; copy_len += len_tmp; length -= len_tmp; if(p_uart_obj[uart_num]->rx_cur_remain == 0) { vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr); p_uart_obj[uart_num]->rx_head_ptr = NULL; p_uart_obj[uart_num]->rx_ptr = NULL; uart_check_buf_full(uart_num); } } xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); return copy_len; } esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); *size = p_uart_obj[uart_num]->rx_buffered_len; return ESP_OK; } esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input"))); esp_err_t uart_flush_input(uart_port_t uart_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); uart_obj_t* p_uart = p_uart_obj[uart_num]; uint8_t* data; size_t size; //rx sem protect the ring buffer read related functions xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY); uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num); while(true) { if(p_uart->rx_head_ptr) { vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain; uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); p_uart->rx_ptr = NULL; p_uart->rx_cur_remain = 0; p_uart->rx_head_ptr = NULL; } data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0); if(data == NULL) { if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) { ESP_LOGE(UART_TAG, "rx_buffered_len error"); p_uart_obj[uart_num]->rx_buffered_len = 0; } //We also need to clear the `rx_buffer_full_flg` here. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); break; } UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_buffered_len -= size; uart_pattern_queue_update(uart_num, size); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); vRingbufferReturnItem(p_uart->rx_ring_buf, data); if(p_uart_obj[uart_num]->rx_buffer_full_flg) { BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); if(res == pdTRUE) { UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); } } } p_uart->rx_ptr = NULL; p_uart->rx_cur_remain = 0; p_uart->rx_head_ptr = NULL; uart_reset_rx_fifo(uart_num); uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num); xSemaphoreGive(p_uart->rx_mux); return ESP_OK; } esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags) { esp_err_t r; UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL); UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL); #if CONFIG_UART_ISR_IN_IRAM UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0, "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL); #else UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL); #endif if(p_uart_obj[uart_num] == NULL) { p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t)); if(p_uart_obj[uart_num] == NULL) { ESP_LOGE(UART_TAG, "UART driver malloc error"); return ESP_FAIL; } p_uart_obj[uart_num]->uart_num = uart_num; p_uart_obj[uart_num]->uart_mode = UART_MODE_UART; p_uart_obj[uart_num]->coll_det_flg = false; p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary(); xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem); p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary(); p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary(); p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex(); p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex(); p_uart_obj[uart_num]->queue_size = queue_size; p_uart_obj[uart_num]->tx_ptr = NULL; p_uart_obj[uart_num]->tx_head = NULL; p_uart_obj[uart_num]->tx_len_tot = 0; p_uart_obj[uart_num]->tx_brk_flg = 0; p_uart_obj[uart_num]->tx_brk_len = 0; p_uart_obj[uart_num]->tx_waiting_brk = 0; p_uart_obj[uart_num]->rx_buffered_len = 0; uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT); if(uart_queue) { p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t)); *uart_queue = p_uart_obj[uart_num]->xQueueUart; ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart)); } else { p_uart_obj[uart_num]->xQueueUart = NULL; } p_uart_obj[uart_num]->rx_buffer_full_flg = false; p_uart_obj[uart_num]->tx_waiting_fifo = false; p_uart_obj[uart_num]->rx_ptr = NULL; p_uart_obj[uart_num]->rx_cur_remain = 0; p_uart_obj[uart_num]->rx_head_ptr = NULL; p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF); if(tx_buffer_size > 0) { p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT); p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size; } else { p_uart_obj[uart_num]->tx_ring_buf = NULL; p_uart_obj[uart_num]->tx_buf_size = 0; } p_uart_obj[uart_num]->uart_select_notif_callback = NULL; } else { ESP_LOGE(UART_TAG, "UART driver already installed"); return ESP_FAIL; } r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle); if (r!=ESP_OK) goto err; uart_intr_config_t uart_intr = { .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M | UART_FRM_ERR_INT_ENA_M | UART_RXFIFO_OVF_INT_ENA_M | UART_BRK_DET_INT_ENA_M | UART_PARITY_ERR_INT_ENA_M, .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT, .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT, .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT }; r=uart_intr_config(uart_num, &uart_intr); if (r!=ESP_OK) goto err; return r; err: uart_driver_delete(uart_num); return r; } //Make sure no other tasks are still using UART before you call this function esp_err_t uart_driver_delete(uart_port_t uart_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); if(p_uart_obj[uart_num] == NULL) { ESP_LOGI(UART_TAG, "ALREADY NULL"); return ESP_OK; } esp_intr_free(p_uart_obj[uart_num]->intr_handle); uart_disable_rx_intr(uart_num); uart_disable_tx_intr(uart_num); uart_pattern_link_free(uart_num); if(p_uart_obj[uart_num]->tx_fifo_sem) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem); p_uart_obj[uart_num]->tx_fifo_sem = NULL; } if(p_uart_obj[uart_num]->tx_done_sem) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem); p_uart_obj[uart_num]->tx_done_sem = NULL; } if(p_uart_obj[uart_num]->tx_brk_sem) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem); p_uart_obj[uart_num]->tx_brk_sem = NULL; } if(p_uart_obj[uart_num]->tx_mux) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux); p_uart_obj[uart_num]->tx_mux = NULL; } if(p_uart_obj[uart_num]->rx_mux) { vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux); p_uart_obj[uart_num]->rx_mux = NULL; } if(p_uart_obj[uart_num]->xQueueUart) { vQueueDelete(p_uart_obj[uart_num]->xQueueUart); p_uart_obj[uart_num]->xQueueUart = NULL; } if(p_uart_obj[uart_num]->rx_ring_buf) { vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf); p_uart_obj[uart_num]->rx_ring_buf = NULL; } if(p_uart_obj[uart_num]->tx_ring_buf) { vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf); p_uart_obj[uart_num]->tx_ring_buf = NULL; } free(p_uart_obj[uart_num]); p_uart_obj[uart_num] = NULL; if (uart_num != CONFIG_CONSOLE_UART_NUM) { periph_module_t periph_module = get_periph_module(uart_num); periph_module_disable(periph_module); } return ESP_OK; } void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback) { if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) { p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback; } } portMUX_TYPE *uart_get_selectlock() { return &uart_selectlock; } // Set UART mode esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode) { UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL) || (mode == UART_MODE_RS485_HALF_DUPLEX)) { UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG); } UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART[uart_num]->rs485_conf.en = 0; UART[uart_num]->rs485_conf.tx_rx_en = 0; UART[uart_num]->rs485_conf.rx_busy_tx_en = 0; UART[uart_num]->conf0.irda_en = 0; UART[uart_num]->conf0.sw_rts = 0; switch (mode) { case UART_MODE_UART: break; case UART_MODE_RS485_COLLISION_DETECT: // This mode allows read while transmitting that allows collision detection p_uart_obj[uart_num]->coll_det_flg = false; // TransmitterÂ’s output signal loop back to the receiverÂ’s input signal UART[uart_num]->rs485_conf.tx_rx_en = 0 ; // Transmitter should send data when its receiver is busy UART[uart_num]->rs485_conf.rx_busy_tx_en = 1; UART[uart_num]->rs485_conf.en = 1; // Enable collision detection interrupts uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA | UART_RXFIFO_FULL_INT_ENA | UART_RS485_CLASH_INT_ENA | UART_RS485_FRM_ERR_INT_ENA | UART_RS485_PARITY_ERR_INT_ENA); break; case UART_MODE_RS485_APP_CTRL: // Application software control, remove echo UART[uart_num]->rs485_conf.rx_busy_tx_en = 1; UART[uart_num]->rs485_conf.en = 1; break; case UART_MODE_RS485_HALF_DUPLEX: // Enable receiver, sw_rts = 1 generates low level on RTS pin UART[uart_num]->conf0.sw_rts = 1; UART[uart_num]->rs485_conf.en = 1; // Must be set to 0 to automatically remove echo UART[uart_num]->rs485_conf.tx_rx_en = 0; // This is to void collision UART[uart_num]->rs485_conf.rx_busy_tx_en = 1; break; case UART_MODE_IRDA: UART[uart_num]->conf0.irda_en = 1; break; default: UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG); break; } p_uart_obj[uart_num]->uart_mode = mode; UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); // The tout_thresh = 1, defines TOUT interrupt timeout equal to // transmission time of one symbol (~11 bit) on current baudrate if (tout_thresh > 0) { //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH) if(UART[uart_num]->conf0.tick_ref_always_on == 0) { UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT; } else { UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh; } UART[uart_num]->conf1.rx_tout_en = 1; } else { UART[uart_num]->conf1.rx_tout_en = 0; } UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); return ESP_OK; } esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG); UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)), "wrong mode", ESP_ERR_INVALID_ARG); *collision_flag = p_uart_obj[uart_num]->coll_det_flg; return ESP_OK; } esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V && wakeup_threshold > UART_MIN_WAKEUP_THRESH), "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG); UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH; return ESP_OK; } esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG); *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH; return ESP_OK; }