/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "sdkconfig.h" #if CONFIG_RMT_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "esp_log.h" #include "esp_check.h" #include "rmt_private.h" #include "clk_ctrl_os.h" #include "soc/rtc.h" #include "soc/rmt_periph.h" #include "hal/rmt_ll.h" #include "driver/gpio.h" #include "esp_private/periph_ctrl.h" static const char *TAG = "rmt"; typedef struct rmt_platform_t { _lock_t mutex; // platform level mutex lock rmt_group_t *groups[SOC_RMT_GROUPS]; // array of RMT group instances int group_ref_counts[SOC_RMT_GROUPS]; // reference count used to protect group install/uninstall } rmt_platform_t; static rmt_platform_t s_platform; // singleton platform rmt_group_t *rmt_acquire_group_handle(int group_id) { bool new_group = false; rmt_group_t *group = NULL; // prevent install rmt group concurrently _lock_acquire(&s_platform.mutex); if (!s_platform.groups[group_id]) { group = heap_caps_calloc(1, sizeof(rmt_group_t), RMT_MEM_ALLOC_CAPS); if (group) { new_group = true; s_platform.groups[group_id] = group; group->group_id = group_id; group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; // initial occupy_mask: 1111...100...0 group->occupy_mask = UINT32_MAX & ~((1 << SOC_RMT_CHANNELS_PER_GROUP) - 1); // group clock won't be configured at this stage, it will be set when allocate the first channel group->clk_src = 0; // enable APB access RMT registers periph_module_enable(rmt_periph_signals.groups[group_id].module); periph_module_reset(rmt_periph_signals.groups[group_id].module); // "uninitialize" group intr_priority, read comments in `rmt_new_tx_channel()` for detail group->intr_priority = RMT_GROUP_INTR_PRIORITY_UNINITALIZED; // hal layer initialize rmt_hal_init(&group->hal); } } else { // group already install group = s_platform.groups[group_id]; } if (group) { // someone acquired the group handle means we have a new object that refer to this group s_platform.group_ref_counts[group_id]++; } _lock_release(&s_platform.mutex); if (new_group) { ESP_LOGD(TAG, "new group(%d) at %p, occupy=%"PRIx32, group_id, group, group->occupy_mask); } return group; } void rmt_release_group_handle(rmt_group_t *group) { int group_id = group->group_id; rmt_clock_source_t clk_src = group->clk_src; bool do_deinitialize = false; _lock_acquire(&s_platform.mutex); s_platform.group_ref_counts[group_id]--; if (s_platform.group_ref_counts[group_id] == 0) { do_deinitialize = true; s_platform.groups[group_id] = NULL; // hal layer deinitialize rmt_hal_deinit(&group->hal); periph_module_disable(rmt_periph_signals.groups[group_id].module); free(group); } _lock_release(&s_platform.mutex); switch (clk_src) { #if SOC_RMT_SUPPORT_RC_FAST case RMT_CLK_SRC_RC_FAST: periph_rtc_dig_clk8m_disable(); break; #endif // SOC_RMT_SUPPORT_RC_FAST default: break; } if (do_deinitialize) { ESP_LOGD(TAG, "del group(%d)", group_id); } } esp_err_t rmt_select_periph_clock(rmt_channel_handle_t chan, rmt_clock_source_t clk_src) { esp_err_t ret = ESP_OK; rmt_group_t *group = chan->group; int channel_id = chan->channel_id; uint32_t periph_src_clk_hz = 0; bool clock_selection_conflict = false; // check if we need to update the group clock source, group clock source is shared by all channels portENTER_CRITICAL(&group->spinlock); if (group->clk_src == 0) { group->clk_src = clk_src; } else { clock_selection_conflict = (group->clk_src != clk_src); } portEXIT_CRITICAL(&group->spinlock); ESP_RETURN_ON_FALSE(!clock_selection_conflict, ESP_ERR_INVALID_STATE, TAG, "group clock conflict, already is %d but attempt to %d", group->clk_src, clk_src); #if CONFIG_PM_ENABLE // if DMA is not used, we're using CPU to push the data to the RMT FIFO // if the CPU frequency goes down, the transfer+encoding scheme could be unstable because CPU can't fill the data in time // so, choose ESP_PM_CPU_FREQ_MAX lock for non-dma mode // otherwise, chose lock type based on the clock source esp_pm_lock_type_t pm_lock_type = chan->dma_chan ? ESP_PM_NO_LIGHT_SLEEP : ESP_PM_CPU_FREQ_MAX; #if SOC_RMT_SUPPORT_APB if (clk_src == RMT_CLK_SRC_APB) { // APB clock frequency can be changed during DFS pm_lock_type = ESP_PM_APB_FREQ_MAX; } #endif // SOC_RMT_SUPPORT_APB sprintf(chan->pm_lock_name, "rmt_%d_%d", group->group_id, channel_id); // e.g. rmt_0_0 ret = esp_pm_lock_create(pm_lock_type, 0, chan->pm_lock_name, &chan->pm_lock); ESP_RETURN_ON_ERROR(ret, TAG, "create pm lock failed"); #endif // [clk_tree] TODO: replace the following switch table by clk_tree API switch (clk_src) { #if SOC_RMT_SUPPORT_APB case RMT_CLK_SRC_APB: periph_src_clk_hz = esp_clk_apb_freq(); #endif // SOC_RMT_SUPPORT_APB break; #if SOC_RMT_SUPPORT_AHB case RMT_CLK_SRC_AHB: periph_src_clk_hz = 48 * 1000 * 1000; break; #endif // SOC_RMT_SUPPORT_AHB #if SOC_RMT_SUPPORT_XTAL case RMT_CLK_SRC_XTAL: periph_src_clk_hz = esp_clk_xtal_freq(); break; #endif // SOC_RMT_SUPPORT_XTAL #if SOC_RMT_SUPPORT_REF_TICK case RMT_CLK_SRC_REF_TICK: periph_src_clk_hz = REF_CLK_FREQ; break; #endif // SOC_RMT_SUPPORT_REF_TICK #if SOC_RMT_SUPPORT_RC_FAST case RMT_CLK_SRC_RC_FAST: periph_rtc_dig_clk8m_enable(); periph_src_clk_hz = periph_rtc_dig_clk8m_get_freq(); break; #endif // SOC_RMT_SUPPORT_RC_FAST default: ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "clock source %d is not supported", clk_src); break; } // no division for group clock source, to achieve highest resolution rmt_ll_set_group_clock_src(group->hal.regs, channel_id, clk_src, 1, 1, 0); group->resolution_hz = periph_src_clk_hz; ESP_LOGD(TAG, "group clock resolution:%"PRIu32, group->resolution_hz); return ret; } esp_err_t rmt_apply_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config) { // specially, we allow config to be NULL, means to disable the carrier submodule ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); return channel->set_carrier_action(channel, config); } esp_err_t rmt_del_channel(rmt_channel_handle_t channel) { ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); gpio_reset_pin(channel->gpio_num); return channel->del(channel); } esp_err_t rmt_enable(rmt_channel_handle_t channel) { ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); return channel->enable(channel); } esp_err_t rmt_disable(rmt_channel_handle_t channel) { ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); return channel->disable(channel); } bool rmt_set_intr_priority_to_group(rmt_group_t *group, int intr_priority) { bool priority_conflict = false; portENTER_CRITICAL(&group->spinlock); if (group->intr_priority == RMT_GROUP_INTR_PRIORITY_UNINITALIZED) { // intr_priority never allocated, accept user's value unconditionally // intr_priority could only be set once here group->intr_priority = intr_priority; } else { // group intr_priority already specified // If interrupt priority specified before, it CANNOT BE CHANGED until `rmt_release_group_handle()` called // So we have to check if the new priority specified conflicts with the old one if (intr_priority) { // User specified intr_priority, check if conflict or not // Even though the `group->intr_priority` is 0, an intr_priority must have been specified automatically too, // although we do not know it exactly now, so specifying the intr_priority again might also cause conflict. // So no matter if `group->intr_priority` is 0 or not, we have to check. // Value `0` of `group->intr_priority` means "unknown", NOT "unspecified"! if (intr_priority != (group->intr_priority)) { // intr_priority conflicts! priority_conflict = true; } } // else do nothing // user did not specify intr_priority, then keep the old priority // We'll use the `RMT_INTR_ALLOC_FLAG | RMT_ALLOW_INTR_PRIORITY_MASK`, which should always success } // The `group->intr_priority` will not change any longer, even though another task tries to modify it. // So we could exit critical here safely. portEXIT_CRITICAL(&group->spinlock); return priority_conflict; } int rmt_get_isr_flags(rmt_group_t *group) { int isr_flags = RMT_INTR_ALLOC_FLAG; if (group->intr_priority) { // Use user-specified priority bit isr_flags |= (1 << (group->intr_priority)); } else { // Allow all LOWMED priority bits isr_flags |= RMT_ALLOW_INTR_PRIORITY_MASK; } return isr_flags; }