/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "esp_random.h" #include #include "sdkconfig.h" #include "nimble/nimble_port.h" #include "nimble/nimble_port_freertos.h" #ifdef ESP_PLATFORM #include "esp_log.h" #endif #if CONFIG_SW_COEXIST_ENABLE #include "esp_coexist_internal.h" #endif #include "nimble/nimble_npl_os.h" #include "nimble/ble_hci_trans.h" #include "os/endian.h" #include "esp_bt.h" #include "esp_intr_alloc.h" #include "esp_sleep.h" #include "esp_pm.h" #include "esp_phy_init.h" #include "soc/syscon_reg.h" #include "soc/modem_clkrst_reg.h" #include "esp_private/periph_ctrl.h" #include "hci_uart.h" #include "bt_osi_mem.h" #ifdef CONFIG_BT_BLUEDROID_ENABLED #include "hci/hci_hal.h" #endif #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_private/periph_ctrl.h" #include "esp_sleep.h" /* Macro definition ************************************************************************ */ #define NIMBLE_PORT_LOG_TAG "BLE_INIT" #define OSI_COEX_VERSION 0x00010006 #define OSI_COEX_MAGIC_VALUE 0xFADEBEAD #define EXT_FUNC_VERSION 0x20220125 #define EXT_FUNC_MAGIC_VALUE 0xA5A5A5A5 #ifdef CONFIG_BT_BLUEDROID_ENABLED /* ACL_DATA_MBUF_LEADINGSPCAE: The leadingspace in user info header for ACL data */ #define ACL_DATA_MBUF_LEADINGSPCAE 4 #endif /* Types definition ************************************************************************ */ struct osi_coex_funcs_t { uint32_t _magic; uint32_t _version; void (* _coex_wifi_sleep_set)(bool sleep); int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high); void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status); void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status); }; struct ext_funcs_t { uint32_t ext_version; int (*_esp_intr_alloc)(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle); int (*_esp_intr_free)(void **ret_handle); void *(* _malloc)(size_t size); void (*_free)(void *p); void (*_hal_uart_start_tx)(int); int (*_hal_uart_init_cbs)(int, hci_uart_tx_char, hci_uart_tx_done, hci_uart_rx_char, void *); int (*_hal_uart_config)(int, int32_t, uint8_t, uint8_t, uart_parity_t, uart_hw_flowcontrol_t); int (*_hal_uart_close)(int); void (*_hal_uart_blocking_tx)(int, uint8_t); int (*_hal_uart_init)(int, void *); int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id); void (* _task_delete)(void *task_handle); void (*_osi_assert)(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2); uint32_t (* _os_random)(void); int (* _ecc_gen_key_pair)(uint8_t *public, uint8_t *priv); int (* _ecc_gen_dh_key)(const uint8_t *remote_pub_key_x, const uint8_t *remote_pub_key_y, const uint8_t *local_priv_key, uint8_t *dhkey); void (* _esp_reset_rpa_moudle)(void); uint32_t magic; }; /* External functions or variables ************************************************************************ */ extern int ble_osi_coex_funcs_register(struct osi_coex_funcs_t *coex_funcs); extern int coex_core_ble_conn_dyn_prio_get(bool *low, bool *high); extern int ble_controller_init(esp_bt_controller_config_t *cfg); extern int ble_controller_deinit(void); extern int ble_controller_enable(uint8_t mode); extern int ble_controller_disable(void); extern int esp_register_ext_funcs (struct ext_funcs_t *); extern void esp_unregister_ext_funcs (void); extern int esp_ble_ll_set_public_addr(const uint8_t *addr); extern int esp_register_npl_funcs (struct npl_funcs_t *p_npl_func); extern void esp_unregister_npl_funcs (void); extern void npl_freertos_mempool_deinit(void); extern void bt_bb_v2_init_cmplx(uint8_t i); extern int os_msys_buf_alloc(void); extern uint32_t r_os_cputime_get32(void); extern uint32_t r_os_cputime_ticks_to_usecs(uint32_t ticks); extern void r_ble_lll_rfmgmt_set_sleep_cb(void *s_cb, void *w_cb, void *s_arg, void *w_arg, uint32_t us_to_enabled); extern void r_ble_rtc_wake_up_state_clr(void); extern int os_msys_init(void); extern void os_msys_buf_free(void); extern int ble_sm_alg_gen_dhkey(const uint8_t *peer_pub_key_x, const uint8_t *peer_pub_key_y, const uint8_t *our_priv_key, uint8_t *out_dhkey); extern int ble_sm_alg_gen_key_pair(uint8_t *pub, uint8_t *priv); extern int ble_txpwr_set(esp_ble_enhanced_power_type_t power_type, uint16_t handle, int power_level); extern int ble_txpwr_get(esp_ble_enhanced_power_type_t power_type, uint16_t handle); /* Local Function Declaration ********************************************************************* */ static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status); static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status); static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id); static void task_delete_wrapper(void *task_handle); #if CONFIG_BT_LE_HCI_INTERFACE_USE_UART static void hci_uart_start_tx_wrapper(int uart_no); static int hci_uart_init_cbs_wrapper(int uart_no, hci_uart_tx_char tx_func, hci_uart_tx_done tx_done, hci_uart_rx_char rx_func, void *arg); static int hci_uart_config_wrapper(int uart_no, int32_t speed, uint8_t databits, uint8_t stopbits, uart_parity_t parity, uart_hw_flowcontrol_t flow_ctl); static int hci_uart_close_wrapper(int uart_no); static void hci_uart_blocking_tx_wrapper(int port, uint8_t data); static int hci_uart_init_wrapper(int uart_no, void *cfg); #endif static int esp_intr_alloc_wrapper(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle_in); static int esp_intr_free_wrapper(void **ret_handle); static void osi_assert_wrapper(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2); static uint32_t osi_random_wrapper(void); static void esp_reset_rpa_moudle(void); /* Local variable definition *************************************************************************** */ /* Static variable declare */ static DRAM_ATTR esp_bt_controller_status_t ble_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE; #ifdef CONFIG_PM_ENABLE static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock = NULL; static bool s_pm_lock_acquired = true; static DRAM_ATTR bool s_btdm_allow_light_sleep; // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock; #define BTDM_MIN_TIMER_UNCERTAINTY_US (200) #else static bool s_bt_phy_enabled = false; #endif /* #ifdef CONFIG_PM_ENABLE */ #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER #define BLE_RTC_DELAY_US (1100) #endif #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER #define BLE_RTC_DELAY_US (0) static void btdm_slp_tmr_callback(void *arg); static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr = NULL; #endif static const struct osi_coex_funcs_t s_osi_coex_funcs_ro = { ._magic = OSI_COEX_MAGIC_VALUE, ._version = OSI_COEX_VERSION, ._coex_wifi_sleep_set = NULL, ._coex_core_ble_conn_dyn_prio_get = NULL, ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper, ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper, }; struct ext_funcs_t ext_funcs_ro = { .ext_version = EXT_FUNC_VERSION, ._esp_intr_alloc = esp_intr_alloc_wrapper, ._esp_intr_free = esp_intr_free_wrapper, ._malloc = bt_osi_mem_malloc_internal, ._free = bt_osi_mem_free, #if CONFIG_BT_LE_HCI_INTERFACE_USE_UART ._hal_uart_start_tx = hci_uart_start_tx_wrapper, ._hal_uart_init_cbs = hci_uart_init_cbs_wrapper, ._hal_uart_config = hci_uart_config_wrapper, ._hal_uart_close = hci_uart_close_wrapper, ._hal_uart_blocking_tx = hci_uart_blocking_tx_wrapper, ._hal_uart_init = hci_uart_init_wrapper, #endif //CONFIG_BT_LE_HCI_INTERFACE_USE_UART ._task_create = task_create_wrapper, ._task_delete = task_delete_wrapper, ._osi_assert = osi_assert_wrapper, ._os_random = osi_random_wrapper, ._ecc_gen_key_pair = ble_sm_alg_gen_key_pair, ._ecc_gen_dh_key = ble_sm_alg_gen_dhkey, ._esp_reset_rpa_moudle = esp_reset_rpa_moudle, .magic = EXT_FUNC_MAGIC_VALUE, }; static void IRAM_ATTR esp_reset_rpa_moudle(void) { periph_module_reset(PERIPH_MODEM_RPA_MODULE); } static void IRAM_ATTR osi_assert_wrapper(const uint32_t ln, const char *fn, uint32_t param1, uint32_t param2) { ESP_LOGE(NIMBLE_PORT_LOG_TAG, "BLE assert: line %d in function %s, param: 0x%x, 0x%x", ln, fn, param1, param2); assert(0); } static uint32_t IRAM_ATTR osi_random_wrapper(void) { return esp_random(); } static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status) { #if CONFIG_SW_COEXIST_ENABLE coex_schm_status_bit_set(type, status); #endif } static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status) { #if CONFIG_SW_COEXIST_ENABLE coex_schm_status_bit_clear(type, status); #endif } #ifdef CONFIG_BT_BLUEDROID_ENABLED bool esp_vhci_host_check_send_available(void) { if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return false; } return true; } /** * Allocates an mbuf for use by the nimble host. */ static struct os_mbuf *ble_hs_mbuf_gen_pkt(uint16_t leading_space) { struct os_mbuf *om; int rc; om = os_msys_get_pkthdr(0, 0); if (om == NULL) { return NULL; } if (om->om_omp->omp_databuf_len < leading_space) { rc = os_mbuf_free_chain(om); assert(rc == 0); return NULL; } om->om_data += leading_space; return om; } /** * Allocates an mbuf suitable for an HCI ACL data packet. * * @return An empty mbuf on success; null on memory * exhaustion. */ struct os_mbuf *ble_hs_mbuf_acl_pkt(void) { return ble_hs_mbuf_gen_pkt(4 + 1); } void esp_vhci_host_send_packet(uint8_t *data, uint16_t len) { if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return; } if (*(data) == DATA_TYPE_COMMAND) { struct ble_hci_cmd *cmd = NULL; cmd = (struct ble_hci_cmd *) ble_hci_trans_buf_alloc(BLE_HCI_TRANS_BUF_CMD); memcpy((uint8_t *)cmd, data + 1, len - 1); ble_hci_trans_hs_cmd_tx((uint8_t *)cmd); } if (*(data) == DATA_TYPE_ACL) { struct os_mbuf *om = os_msys_get_pkthdr(0, ACL_DATA_MBUF_LEADINGSPCAE); assert(om); memcpy(om->om_data, &data[1], len - 1); om->om_len = len - 1; OS_MBUF_PKTHDR(om)->omp_len = len - 1; ble_hci_trans_hs_acl_tx(om); } } esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback) { if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_FAIL; } ble_hci_trans_cfg_hs(ble_hs_hci_rx_evt, NULL, ble_hs_rx_data, NULL); return ESP_OK; } #endif static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id) { return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY)); } static void task_delete_wrapper(void *task_handle) { vTaskDelete(task_handle); } #ifdef CONFIG_BT_LE_HCI_INTERFACE_USE_UART static void hci_uart_start_tx_wrapper(int uart_no) { hci_uart_start_tx(uart_no); } static int hci_uart_init_cbs_wrapper(int uart_no, hci_uart_tx_char tx_func, hci_uart_tx_done tx_done, hci_uart_rx_char rx_func, void *arg) { int rc = -1; rc = hci_uart_init_cbs(uart_no, tx_func, tx_done, rx_func, arg); return rc; } static int hci_uart_config_wrapper(int port_num, int32_t baud_rate, uint8_t data_bits, uint8_t stop_bits, uart_parity_t parity, uart_hw_flowcontrol_t flow_ctl) { int rc = -1; rc = hci_uart_config(port_num, baud_rate, data_bits, stop_bits, parity, flow_ctl); return rc; } static int hci_uart_close_wrapper(int uart_no) { int rc = -1; rc = hci_uart_close(uart_no); return rc; } static void hci_uart_blocking_tx_wrapper(int port, uint8_t data) { //This function is nowhere to use. } static int hci_uart_init_wrapper(int uart_no, void *cfg) { //This function is nowhere to use. return 0; } #endif //CONFIG_BT_LE_HCI_INTERFACE_USE_UART static int ble_hci_unregistered_hook(void*, void*) { ESP_LOGD(NIMBLE_PORT_LOG_TAG,"%s ble hci rx_evt is not registered.",__func__); return 0; } static int esp_intr_alloc_wrapper(int source, int flags, intr_handler_t handler, void *arg, void **ret_handle_in) { int rc = esp_intr_alloc(source, flags, handler, arg, (intr_handle_t *)ret_handle_in); return rc; } static int esp_intr_free_wrapper(void **ret_handle) { int rc = 0; rc = esp_intr_free((intr_handle_t) * ret_handle); *ret_handle = NULL; return rc; } IRAM_ATTR void controller_sleep_cb(uint32_t enable_tick, void *arg) { esp_phy_disable(); #ifdef CONFIG_PM_ENABLE #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER uint32_t tick_invalid = *(uint32_t*)(arg); assert(arg != NULL); if(!tick_invalid) { uint32_t sleep_tick = r_os_cputime_get32(); if(enable_tick <= sleep_tick) { return; } // start a timer to wake up and acquire the pm_lock before modem_sleep awakes uint32_t us_to_sleep = r_os_cputime_ticks_to_usecs(enable_tick - sleep_tick); assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US); esp_err_t err = esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - BTDM_MIN_TIMER_UNCERTAINTY_US); if (err != ESP_OK) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "ESP timer start failed\n"); return; } } #endif // CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER r_ble_rtc_wake_up_state_clr(); #endif if (s_pm_lock_acquired) { assert(s_pm_lock != NULL); esp_pm_lock_release(s_pm_lock); s_pm_lock_acquired = false; } #else s_bt_phy_enabled = false; #endif // CONFIG_PM_ENABLE } IRAM_ATTR void controller_wakeup_cb(void *arg) { esp_phy_enable(); // need to check if need to call pm lock here #ifdef CONFIG_PM_ENABLE assert(s_pm_lock != NULL); if (!s_pm_lock_acquired) { s_pm_lock_acquired = true; esp_pm_lock_acquire(s_pm_lock); } #else s_bt_phy_enabled = true; #endif //CONFIG_PM_ENABLE } #ifdef CONFIG_PM_ENABLE #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER static void btdm_slp_tmr_callback(void * arg) { (void)(arg); if (!s_pm_lock_acquired) { assert(s_pm_lock != NULL); s_pm_lock_acquired = true; esp_pm_lock_acquire(s_pm_lock); } } #endif // CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER #endif // CONFIG_PM_ENABLE void controller_sleep_init(void) { #ifdef CONFIG_PM_ENABLE s_btdm_allow_light_sleep = false; #else s_bt_phy_enabled = true; #endif // CONFIG_PM_ENABLE #ifdef CONFIG_BT_LE_SLEEP_ENABLE ESP_LOGW(NIMBLE_PORT_LOG_TAG, "BLE modem sleep is enabled\n"); r_ble_lll_rfmgmt_set_sleep_cb(controller_sleep_cb, controller_wakeup_cb, 0, 0, 500 + BLE_RTC_DELAY_US); #ifdef CONFIG_PM_ENABLE s_btdm_allow_light_sleep = true; esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON); #endif // CONFIG_PM_ENABLE #endif // CONFIG_BT_LE_SLEEP_ENABLE // enable light sleep #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btnosleep", &s_light_sleep_pm_lock) != ESP_OK) { goto error; } } if (esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock) != ESP_OK) { goto error; } #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER esp_timer_create_args_t create_args = { .callback = btdm_slp_tmr_callback, .arg = NULL, .name = "btSlp" }; if (esp_timer_create(&create_args, &s_btdm_slp_tmr) != ESP_OK) { goto error; } ESP_LOGW(NIMBLE_PORT_LOG_TAG, "Enable light sleep, the wake up source is ESP timer"); #endif //CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER esp_sleep_enable_bt_wakeup(); ESP_LOGW(NIMBLE_PORT_LOG_TAG, "Enable light sleep, the wake up source is BLE timer"); #endif // CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER s_pm_lock_acquired = true; if (!s_btdm_allow_light_sleep) { esp_pm_lock_acquire(s_light_sleep_pm_lock); } if (s_pm_lock) { esp_pm_lock_acquire(s_pm_lock); } return; error: if (!s_btdm_allow_light_sleep) { if (s_light_sleep_pm_lock != NULL) { esp_pm_lock_delete(s_light_sleep_pm_lock); s_light_sleep_pm_lock = NULL; } } if (s_pm_lock != NULL) { esp_pm_lock_delete(s_pm_lock); s_pm_lock = NULL; } #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER if (s_btdm_slp_tmr != NULL) { esp_timer_delete(s_btdm_slp_tmr); s_btdm_slp_tmr = NULL; } #endif // CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER esp_sleep_disable_bt_wakeup(); #endif // CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER #endif //CONFIG_PM_ENABLE } void controller_sleep_deinit(void) { #ifdef CONFIG_PM_ENABLE #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_BLE_RTC_TIMER r_ble_rtc_wake_up_state_clr(); esp_sleep_disable_bt_wakeup(); #endif esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_AUTO); /*lock should release first and then delete*/ if (s_pm_lock_acquired) { if(s_light_sleep_pm_lock != NULL) esp_pm_lock_release(s_light_sleep_pm_lock); } if(s_pm_lock != NULL) { esp_pm_lock_release(s_pm_lock); } s_pm_lock_acquired = false; } if (!s_btdm_allow_light_sleep) { if (s_light_sleep_pm_lock != NULL) { esp_pm_lock_delete(s_light_sleep_pm_lock); s_light_sleep_pm_lock = NULL; } } if (s_pm_lock != NULL) { esp_pm_lock_delete(s_pm_lock); s_pm_lock = NULL; } #ifdef CONFIG_BT_LE_WAKEUP_SOURCE_CPU_RTC_TIMER if(s_btdm_slp_tmr != NULL) { esp_timer_stop(s_btdm_slp_tmr); esp_timer_delete(s_btdm_slp_tmr); s_btdm_slp_tmr = NULL; } #endif if (s_pm_lock_acquired) { esp_phy_disable(); s_pm_lock_acquired = false; } #else if (s_bt_phy_enabled) { esp_phy_disable(); s_bt_phy_enabled = false; } #endif } void ble_rtc_clk_init(void) { // modem_clkrst_reg // LP_TIMER_SEL_XTAL32K -> 0 // LP_TIMER_SEL_XTAL -> 1 // LP_TIMER_SEL_8M -> 0 // LP_TIMER_SEL_RTC_SLOW -> 0 SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 0, MODEM_CLKRST_LP_TIMER_SEL_XTAL32K_S); SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 1, MODEM_CLKRST_LP_TIMER_SEL_XTAL_S); SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 0, MODEM_CLKRST_LP_TIMER_SEL_8M_S); SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, 1, 0, MODEM_CLKRST_LP_TIMER_SEL_RTC_SLOW_S); #ifdef CONFIG_XTAL_FREQ_26 // LP_TIMER_CLK_DIV_NUM -> 130 SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, MODEM_CLKRST_LP_TIMER_CLK_DIV_NUM, 129, MODEM_CLKRST_LP_TIMER_CLK_DIV_NUM_S); #else // LP_TIMER_CLK_DIV_NUM -> 250 SET_PERI_REG_BITS(MODEM_CLKRST_MODEM_LP_TIMER_CONF_REG, MODEM_CLKRST_LP_TIMER_CLK_DIV_NUM, 249, MODEM_CLKRST_LP_TIMER_CLK_DIV_NUM_S); #endif // CONFIG_XTAL_FREQ_26 // MODEM_CLKRST_ETM_CLK_ACTIVE -> 1 // MODEM_CLKRST_ETM_CLK_SEL -> 0 SET_PERI_REG_BITS(MODEM_CLKRST_ETM_CLK_CONF_REG, 1, 1, MODEM_CLKRST_ETM_CLK_ACTIVE_S); SET_PERI_REG_BITS(MODEM_CLKRST_ETM_CLK_CONF_REG, 1, 0, MODEM_CLKRST_ETM_CLK_SEL_S); } esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg) { if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state"); return ESP_FAIL; } if (cfg == NULL) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "cfg is NULL"); return ESP_ERR_INVALID_ARG; } ble_rtc_clk_init(); if (esp_register_ext_funcs(&ext_funcs_ro) != 0) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "register extend functions failed"); return ESP_ERR_INVALID_ARG; } /* Initialize the function pointers for OS porting */ npl_freertos_funcs_init(); struct npl_funcs_t *p_npl_funcs = npl_freertos_funcs_get(); if (!p_npl_funcs) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl functions get failed"); return ESP_ERR_INVALID_ARG; } if (esp_register_npl_funcs(p_npl_funcs) != 0) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl functions register failed"); return ESP_ERR_INVALID_ARG; } if (npl_freertos_mempool_init() != 0) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "npl mempool init failed"); return ESP_ERR_INVALID_ARG; } /* Initialize the global memory pool */ if (os_msys_buf_alloc() != 0) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "os msys alloc failed"); return ESP_ERR_INVALID_ARG; } os_msys_init(); #if CONFIG_BT_NIMBLE_ENABLED // ble_npl_eventq_init() need to use npl function in rom and must be called after esp_bt_controller_init() /* Initialize default event queue */ ble_npl_eventq_init(nimble_port_get_dflt_eventq()); #endif esp_phy_pd_mem_init(); periph_module_enable(PERIPH_BT_MODULE); // init phy esp_phy_enable(); // init bb bt_bb_v2_init_cmplx(1); if (ble_osi_coex_funcs_register((struct osi_coex_funcs_t *)&s_osi_coex_funcs_ro) != 0) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "osi coex funcs reg failed"); return ESP_ERR_INVALID_ARG; } #if CONFIG_SW_COEXIST_ENABLE coex_init(); #endif int rc = ble_controller_init(cfg); if (rc != 0) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "ble_controller_init failed %d", rc); return ESP_ERR_NO_MEM; } controller_sleep_init(); uint8_t mac[6]; ESP_ERROR_CHECK(esp_read_mac((uint8_t *)mac, ESP_MAC_BT)); swap_in_place(mac, 6); esp_ble_ll_set_public_addr(mac); ble_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; ble_hci_trans_cfg_hs((ble_hci_trans_rx_cmd_fn *)ble_hci_unregistered_hook,NULL, (ble_hci_trans_rx_acl_fn *)ble_hci_unregistered_hook,NULL); return ESP_OK; } esp_err_t esp_bt_controller_deinit(void) { if ((ble_controller_status < ESP_BT_CONTROLLER_STATUS_INITED) || (ble_controller_status >= ESP_BT_CONTROLLER_STATUS_ENABLED)) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state"); return ESP_FAIL; } controller_sleep_deinit(); if (ble_controller_deinit() != 0) { return ESP_FAIL; } #if CONFIG_BT_NIMBLE_ENABLED /* De-initialize default event queue */ ble_npl_eventq_deinit(nimble_port_get_dflt_eventq()); #endif os_msys_buf_free(); esp_unregister_npl_funcs(); esp_unregister_ext_funcs(); /* De-initialize npl functions */ npl_freertos_funcs_deinit(); npl_freertos_mempool_deinit(); esp_phy_pd_mem_deinit(); ble_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE; return ESP_OK; } esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode) { if (mode != ESP_BT_MODE_BLE) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller mode"); return ESP_FAIL; } if (ble_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state"); return ESP_FAIL; } #if CONFIG_SW_COEXIST_ENABLE coex_enable(); #endif if (ble_controller_enable(mode) != 0) { return ESP_FAIL; } ble_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED; return ESP_OK; } esp_err_t esp_bt_controller_disable(void) { if (ble_controller_status < ESP_BT_CONTROLLER_STATUS_ENABLED) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "invalid controller state"); return ESP_FAIL; } if (ble_controller_disable() != 0) { return ESP_FAIL; } ble_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; return ESP_OK; } esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__); return ESP_OK; } esp_err_t esp_bt_mem_release(esp_bt_mode_t mode) { ESP_LOGW(NIMBLE_PORT_LOG_TAG, "%s not implemented, return OK", __func__); return ESP_OK; } esp_bt_controller_status_t esp_bt_controller_get_status(void) { return ble_controller_status; } /* extra functions */ esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level) { esp_err_t stat = ESP_FAIL; switch (power_type) { case ESP_BLE_PWR_TYPE_DEFAULT: case ESP_BLE_PWR_TYPE_ADV: case ESP_BLE_PWR_TYPE_SCAN: if (ble_txpwr_set(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0, power_level) == 0) { stat = ESP_OK; } break; case ESP_BLE_PWR_TYPE_CONN_HDL0: case ESP_BLE_PWR_TYPE_CONN_HDL1: case ESP_BLE_PWR_TYPE_CONN_HDL2: case ESP_BLE_PWR_TYPE_CONN_HDL3: case ESP_BLE_PWR_TYPE_CONN_HDL4: case ESP_BLE_PWR_TYPE_CONN_HDL5: case ESP_BLE_PWR_TYPE_CONN_HDL6: case ESP_BLE_PWR_TYPE_CONN_HDL7: case ESP_BLE_PWR_TYPE_CONN_HDL8: if (ble_txpwr_set(ESP_BLE_ENHANCED_PWR_TYPE_CONN, power_type, power_level) == 0) { stat = ESP_OK; } break; default: stat = ESP_ERR_NOT_SUPPORTED; break; } return stat; } esp_err_t esp_ble_tx_power_set_enhanced(esp_ble_enhanced_power_type_t power_type, uint16_t handle, esp_power_level_t power_level) { esp_err_t stat = ESP_FAIL; switch (power_type) { case ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT: case ESP_BLE_ENHANCED_PWR_TYPE_SCAN: case ESP_BLE_ENHANCED_PWR_TYPE_INIT: if (ble_txpwr_set(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0, power_level) == 0) { stat = ESP_OK; } break; case ESP_BLE_ENHANCED_PWR_TYPE_ADV: case ESP_BLE_ENHANCED_PWR_TYPE_CONN: if (ble_txpwr_set(power_type, handle, power_level) == 0) { stat = ESP_OK; } break; default: stat = ESP_ERR_NOT_SUPPORTED; break; } return stat; } esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type) { int tx_level = 0; switch (power_type) { case ESP_BLE_PWR_TYPE_ADV: case ESP_BLE_PWR_TYPE_SCAN: case ESP_BLE_PWR_TYPE_DEFAULT: tx_level = ble_txpwr_get(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0); break; case ESP_BLE_PWR_TYPE_CONN_HDL0: case ESP_BLE_PWR_TYPE_CONN_HDL1: case ESP_BLE_PWR_TYPE_CONN_HDL2: case ESP_BLE_PWR_TYPE_CONN_HDL3: case ESP_BLE_PWR_TYPE_CONN_HDL4: case ESP_BLE_PWR_TYPE_CONN_HDL5: case ESP_BLE_PWR_TYPE_CONN_HDL6: case ESP_BLE_PWR_TYPE_CONN_HDL7: case ESP_BLE_PWR_TYPE_CONN_HDL8: tx_level = ble_txpwr_get(ESP_BLE_ENHANCED_PWR_TYPE_CONN, power_type); break; default: return ESP_PWR_LVL_INVALID; } if (tx_level < 0) { return ESP_PWR_LVL_INVALID; } return (esp_power_level_t)tx_level; } esp_power_level_t esp_ble_tx_power_get_enhanced(esp_ble_enhanced_power_type_t power_type, uint16_t handle) { int tx_level = 0; switch (power_type) { case ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT: case ESP_BLE_ENHANCED_PWR_TYPE_SCAN: case ESP_BLE_ENHANCED_PWR_TYPE_INIT: tx_level = ble_txpwr_get(ESP_BLE_ENHANCED_PWR_TYPE_DEFAULT, 0); break; case ESP_BLE_ENHANCED_PWR_TYPE_ADV: case ESP_BLE_ENHANCED_PWR_TYPE_CONN: tx_level = ble_txpwr_get(power_type, handle); break; default: return ESP_PWR_LVL_INVALID; } if (tx_level < 0) { return ESP_PWR_LVL_INVALID; } return (esp_power_level_t)tx_level; } #if (!CONFIG_BT_NIMBLE_ENABLED) && (CONFIG_BT_CONTROLLER_ENABLED == true) #define BLE_SM_KEY_ERR 0x17 #if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS #include "mbedtls/aes.h" #if CONFIG_BT_LE_SM_SC #include "mbedtls/cipher.h" #include "mbedtls/entropy.h" #include "mbedtls/ctr_drbg.h" #include "mbedtls/cmac.h" #include "mbedtls/ecdh.h" #include "mbedtls/ecp.h" #endif #else #include "tinycrypt/aes.h" #include "tinycrypt/constants.h" #include "tinycrypt/utils.h" #if CONFIG_BT_LE_SM_SC #include "tinycrypt/cmac_mode.h" #include "tinycrypt/ecc_dh.h" #endif #endif #if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS #if CONFIG_BT_LE_SM_SC static mbedtls_ecp_keypair keypair; #endif #endif int ble_sm_alg_gen_dhkey(const uint8_t *peer_pub_key_x, const uint8_t *peer_pub_key_y, const uint8_t *our_priv_key, uint8_t *out_dhkey) { uint8_t dh[32]; uint8_t pk[64]; uint8_t priv[32]; int rc = BLE_SM_KEY_ERR; swap_buf(pk, peer_pub_key_x, 32); swap_buf(&pk[32], peer_pub_key_y, 32); swap_buf(priv, our_priv_key, 32); #if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS struct mbedtls_ecp_point pt = {0}, Q = {0}; mbedtls_mpi z = {0}, d = {0}; mbedtls_ctr_drbg_context ctr_drbg = {0}; mbedtls_entropy_context entropy = {0}; uint8_t pub[65] = {0}; /* Hardcoded first byte of pub key for MBEDTLS_ECP_PF_UNCOMPRESSED */ pub[0] = 0x04; memcpy(&pub[1], pk, 64); /* Initialize the required structures here */ mbedtls_ecp_point_init(&pt); mbedtls_ecp_point_init(&Q); mbedtls_ctr_drbg_init(&ctr_drbg); mbedtls_entropy_init(&entropy); mbedtls_mpi_init(&d); mbedtls_mpi_init(&z); /* Below 3 steps are to validate public key on curve secp256r1 */ if (mbedtls_ecp_group_load(&keypair.MBEDTLS_PRIVATE(grp), MBEDTLS_ECP_DP_SECP256R1) != 0) { goto exit; } if (mbedtls_ecp_point_read_binary(&keypair.MBEDTLS_PRIVATE(grp), &pt, pub, 65) != 0) { goto exit; } if (mbedtls_ecp_check_pubkey(&keypair.MBEDTLS_PRIVATE(grp), &pt) != 0) { goto exit; } /* Set PRNG */ if ((rc = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, NULL, 0)) != 0) { goto exit; } /* Prepare point Q from pub key */ if (mbedtls_ecp_point_read_binary(&keypair.MBEDTLS_PRIVATE(grp), &Q, pub, 65) != 0) { goto exit; } if (mbedtls_mpi_read_binary(&d, priv, 32) != 0) { goto exit; } rc = mbedtls_ecdh_compute_shared(&keypair.MBEDTLS_PRIVATE(grp), &z, &Q, &d, mbedtls_ctr_drbg_random, &ctr_drbg); if (rc != 0) { goto exit; } rc = mbedtls_mpi_write_binary(&z, dh, 32); if (rc != 0) { goto exit; } exit: mbedtls_ecp_point_free(&pt); mbedtls_mpi_free(&z); mbedtls_mpi_free(&d); mbedtls_ecp_point_free(&Q); mbedtls_entropy_free(&entropy); mbedtls_ctr_drbg_free(&ctr_drbg); if (rc != 0) { return BLE_SM_KEY_ERR; } #else if (uECC_valid_public_key(pk, &curve_secp256r1) < 0) { return BLE_SM_KEY_ERR; } rc = uECC_shared_secret(pk, priv, dh, &curve_secp256r1); if (rc == TC_CRYPTO_FAIL) { return BLE_SM_KEY_ERR; } #endif swap_buf(out_dhkey, dh, 32); return 0; } /* based on Core Specification 4.2 Vol 3. Part H 2.3.5.6.1 */ static const uint8_t ble_sm_alg_dbg_priv_key[32] = { 0x3f, 0x49, 0xf6, 0xd4, 0xa3, 0xc5, 0x5f, 0x38, 0x74, 0xc9, 0xb3, 0xe3, 0xd2, 0x10, 0x3f, 0x50, 0x4a, 0xff, 0x60, 0x7b, 0xeb, 0x40, 0xb7, 0x99, 0x58, 0x99, 0xb8, 0xa6, 0xcd, 0x3c, 0x1a, 0xbd }; #if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS static int mbedtls_gen_keypair(uint8_t *public_key, uint8_t *private_key) { int rc = BLE_SM_KEY_ERR; mbedtls_entropy_context entropy = {0}; mbedtls_ctr_drbg_context ctr_drbg = {0}; mbedtls_entropy_init(&entropy); mbedtls_ctr_drbg_init(&ctr_drbg); mbedtls_ecp_keypair_init(&keypair); if ((rc = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, NULL, 0)) != 0) { goto exit; } if ((rc = mbedtls_ecp_gen_key(MBEDTLS_ECP_DP_SECP256R1, &keypair, mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) { goto exit; } if ((rc = mbedtls_mpi_write_binary(&keypair.MBEDTLS_PRIVATE(d), private_key, 32)) != 0) { goto exit; } size_t olen = 0; uint8_t pub[65] = {0}; if ((rc = mbedtls_ecp_point_write_binary(&keypair.MBEDTLS_PRIVATE(grp), &keypair.MBEDTLS_PRIVATE(Q), MBEDTLS_ECP_PF_UNCOMPRESSED, &olen, pub, 65)) != 0) { goto exit; } memcpy(public_key, &pub[1], 64); exit: mbedtls_ctr_drbg_free(&ctr_drbg); mbedtls_entropy_free(&entropy); if (rc != 0) { mbedtls_ecp_keypair_free(&keypair); return BLE_SM_KEY_ERR; } return 0; } #endif /** * pub: 64 bytes * priv: 32 bytes */ int ble_sm_alg_gen_key_pair(uint8_t *pub, uint8_t *priv) { #if CONFIG_BT_LE_SM_SC_DEBUG_KEYS swap_buf(pub, ble_sm_alg_dbg_pub_key, 32); swap_buf(&pub[32], &ble_sm_alg_dbg_pub_key[32], 32); swap_buf(priv, ble_sm_alg_dbg_priv_key, 32); #else uint8_t pk[64]; do { #if CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS if (mbedtls_gen_keypair(pk, priv) != 0) { return BLE_SM_KEY_ERR; } #else if (uECC_make_key(pk, priv, &curve_secp256r1) != TC_CRYPTO_SUCCESS) { return BLE_SM_KEY_ERR; } #endif /* Make sure generated key isn't debug key. */ } while (memcmp(priv, ble_sm_alg_dbg_priv_key, 32) == 0); swap_buf(pub, pk, 32); swap_buf(&pub[32], &pk[32], 32); swap_in_place(priv, 32); #endif return 0; } #endif