/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "esp_err.h" #include "esp_ipc.h" #include "esp_private/esp_ipc_isr.h" #include "esp_attr.h" #include "esp_cpu.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #define IPC_MAX_PRIORITY (configMAX_PRIORITIES - 1) #if !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE) #if CONFIG_COMPILER_OPTIMIZATION_NONE #define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE + 0x100) #else #define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE) #endif //CONFIG_COMPILER_OPTIMIZATION_NONE static DRAM_ATTR StaticSemaphore_t s_ipc_mutex_buffer[portNUM_PROCESSORS]; static DRAM_ATTR StaticSemaphore_t s_ipc_sem_buffer[portNUM_PROCESSORS]; static DRAM_ATTR StaticSemaphore_t s_ipc_ack_buffer[portNUM_PROCESSORS]; static TaskHandle_t s_ipc_task_handle[portNUM_PROCESSORS]; static SemaphoreHandle_t s_ipc_mutex[portNUM_PROCESSORS]; // This mutex is used as a global lock for esp_ipc_* APIs static SemaphoreHandle_t s_ipc_sem[portNUM_PROCESSORS]; // Two semaphores used to wake each of ipc tasks static SemaphoreHandle_t s_ipc_ack[portNUM_PROCESSORS]; // Semaphore used to acknowledge that task was woken up, // or function has finished running static volatile esp_ipc_func_t s_func[portNUM_PROCESSORS]; // Function which should be called by high priority task static void * volatile s_func_arg[portNUM_PROCESSORS]; // Argument to pass into s_func typedef enum { IPC_WAIT_FOR_START, IPC_WAIT_FOR_END } esp_ipc_wait_t; static volatile esp_ipc_wait_t s_ipc_wait[portNUM_PROCESSORS];// This variable tells high priority task when it should give // s_ipc_ack semaphore: before s_func is called, or // after it returns static volatile esp_ipc_func_t s_no_block_func[portNUM_PROCESSORS] = { 0 }; static volatile bool s_no_block_func_and_arg_are_ready[portNUM_PROCESSORS] = { 0 }; static void * volatile s_no_block_func_arg[portNUM_PROCESSORS]; static void IRAM_ATTR ipc_task(void* arg) { const int cpuid = (int) arg; assert(cpuid == xPortGetCoreID()); #ifdef CONFIG_ESP_IPC_ISR_ENABLE esp_ipc_isr_init(); #endif while (true) { // Wait for IPC to be initiated. // This will be indicated by giving the semaphore corresponding to // this CPU. if (xSemaphoreTake(s_ipc_sem[cpuid], portMAX_DELAY) != pdTRUE) { // TODO: when can this happen? abort(); } if (s_no_block_func_and_arg_are_ready[cpuid] && s_no_block_func[cpuid]) { (*s_no_block_func[cpuid])(s_no_block_func_arg[cpuid]); s_no_block_func_and_arg_are_ready[cpuid] = false; s_no_block_func[cpuid] = NULL; // esp_ipc API and esp_ipc_call_nonblocking APIs can be processed together if they came at the same time } if (s_func[cpuid]) { // we need to cache s_func, s_func_arg and s_ipc_wait variables locally because they can be changed by a subsequent IPC call. esp_ipc_func_t func = s_func[cpuid]; void* arg = s_func_arg[cpuid]; esp_ipc_wait_t ipc_wait = s_ipc_wait[cpuid]; s_func[cpuid] = NULL; if (ipc_wait == IPC_WAIT_FOR_START) { xSemaphoreGive(s_ipc_ack[cpuid]); } (*func)(arg); if (ipc_wait == IPC_WAIT_FOR_END) { xSemaphoreGive(s_ipc_ack[cpuid]); } } } // TODO: currently this is unreachable code. Introduce esp_ipc_uninit // function which will signal to both tasks that they can shut down. // Not critical at this point, we don't have a use case for stopping // IPC yet. // Also need to delete the semaphore here. vTaskDelete(NULL); } /* * Initialize inter-processor call module. This function is called automatically * on CPU start and should not be called from the application. * * This function start two tasks, one on each CPU. These tasks are started * with high priority. These tasks are normally inactive, waiting until one of * the esp_ipc_call_* functions to be used. One of these tasks will be * woken up to execute the callback provided to esp_ipc_call_nonblocking or * esp_ipc_call_blocking. */ static void esp_ipc_init(void) __attribute__((constructor)); static void esp_ipc_init(void) { char task_name[configMAX_TASK_NAME_LEN]; for (int i = 0; i < portNUM_PROCESSORS; ++i) { snprintf(task_name, sizeof(task_name), "ipc%d", i); s_ipc_mutex[i] = xSemaphoreCreateMutexStatic(&s_ipc_mutex_buffer[i]); s_ipc_ack[i] = xSemaphoreCreateBinaryStatic(&s_ipc_ack_buffer[i]); s_ipc_sem[i] = xSemaphoreCreateBinaryStatic(&s_ipc_sem_buffer[i]); portBASE_TYPE res = xTaskCreatePinnedToCore(ipc_task, task_name, IPC_STACK_SIZE, (void*) i, IPC_MAX_PRIORITY, &s_ipc_task_handle[i], i); assert(res == pdTRUE); (void)res; } } static esp_err_t esp_ipc_call_and_wait(uint32_t cpu_id, esp_ipc_func_t func, void* arg, esp_ipc_wait_t wait_for) { if (cpu_id >= portNUM_PROCESSORS) { return ESP_ERR_INVALID_ARG; } if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) { return ESP_ERR_INVALID_STATE; } #ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY TaskHandle_t task_handler = xTaskGetCurrentTaskHandle(); UBaseType_t priority_of_current_task = uxTaskPriorityGet(task_handler); UBaseType_t priority_of_running_ipc_task = uxTaskPriorityGet(s_ipc_task_handle[cpu_id]); if (priority_of_running_ipc_task < priority_of_current_task) { vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task); } xSemaphoreTake(s_ipc_mutex[cpu_id], portMAX_DELAY); vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task); #else xSemaphoreTake(s_ipc_mutex[0], portMAX_DELAY); #endif s_func_arg[cpu_id] = arg; s_ipc_wait[cpu_id] = wait_for; // s_func must be set after all other parameters. The ipc_task use this as indicator of the IPC is prepared. s_func[cpu_id] = func; xSemaphoreGive(s_ipc_sem[cpu_id]); xSemaphoreTake(s_ipc_ack[cpu_id], portMAX_DELAY); #ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY xSemaphoreGive(s_ipc_mutex[cpu_id]); #else xSemaphoreGive(s_ipc_mutex[0]); #endif return ESP_OK; } esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg) { return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_START); } esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg) { return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_END); } esp_err_t esp_ipc_call_nonblocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg) { if (cpu_id >= portNUM_PROCESSORS || s_ipc_task_handle[cpu_id] == NULL) { return ESP_ERR_INVALID_ARG; } if (cpu_id == xPortGetCoreID() && xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) { return ESP_ERR_INVALID_STATE; } // Since it can be called from an interrupt or Scheduler is Suspened, it can not wait for a mutex to be released. if (esp_cpu_compare_and_set((volatile uint32_t *)&s_no_block_func[cpu_id], 0, (uint32_t)func)) { s_no_block_func_arg[cpu_id] = arg; s_no_block_func_and_arg_are_ready[cpu_id] = true; if (xPortInIsrContext()) { xSemaphoreGiveFromISR(s_ipc_sem[cpu_id], NULL); } else { #ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY vTaskPrioritySet(s_ipc_task_handle[cpu_id], IPC_MAX_PRIORITY); #endif xSemaphoreGive(s_ipc_sem[cpu_id]); } return ESP_OK; } return ESP_FAIL; } #endif // !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)