/* * SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #include "esp_check.h" #include "esp_log.h" #include "esp_heap_caps.h" #include "esp_rom_caps.h" #include "soc/soc_caps.h" #include "hal/mmu_hal.h" #include "hal/cache_hal.h" #include "hal/cache_ll.h" #include "esp_cache.h" #include "esp_private/esp_cache_private.h" #include "esp_private/critical_section.h" static const char *TAG = "cache"; #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1)) DEFINE_CRIT_SECTION_LOCK_STATIC(s_spinlock); esp_err_t esp_cache_msync(void *addr, size_t size, int flags) { ESP_RETURN_ON_FALSE_ISR(addr, ESP_ERR_INVALID_ARG, TAG, "null pointer"); uint32_t addr_end = 0; bool ovf = __builtin_add_overflow((uint32_t)addr, size, &addr_end); ESP_EARLY_LOGV(TAG, "addr_end: 0x%x\n", addr_end); ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow"); bool both_dir = (flags & ESP_CACHE_MSYNC_FLAG_DIR_C2M) && (flags & ESP_CACHE_MSYNC_FLAG_DIR_M2C); bool both_type = (flags & ESP_CACHE_MSYNC_FLAG_TYPE_DATA) && (flags & ESP_CACHE_MSYNC_FLAG_TYPE_INST); ESP_RETURN_ON_FALSE_ISR(!both_dir && !both_type, ESP_ERR_INVALID_ARG, TAG, "both C2M and M2C directions, or both data and instruction type are selected, you should only select one direction or one type"); uint32_t vaddr = (uint32_t)addr; bool valid = false; uint32_t cache_level = 0; uint32_t cache_id = 0; valid = cache_hal_vaddr_to_cache_level_id(vaddr, size, &cache_level, &cache_id); ESP_RETURN_ON_FALSE_ISR(valid, ESP_ERR_INVALID_ARG, TAG, "invalid addr or null pointer"); cache_type_t cache_type = CACHE_TYPE_DATA; if (flags & ESP_CACHE_MSYNC_FLAG_TYPE_INST) { cache_type = CACHE_TYPE_INSTRUCTION; } uint32_t cache_line_size = cache_hal_get_cache_line_size(cache_level, cache_type); if ((flags & ESP_CACHE_MSYNC_FLAG_UNALIGNED) == 0) { bool aligned_addr = (((uint32_t)addr % cache_line_size) == 0) && ((size % cache_line_size) == 0); ESP_RETURN_ON_FALSE_ISR(aligned_addr, ESP_ERR_INVALID_ARG, TAG, "start address: 0x%x, or the size: 0x%x is(are) not aligned with cache line size (0x%x)B", (uint32_t)addr, size, cache_line_size); } if (flags & ESP_CACHE_MSYNC_FLAG_DIR_M2C) { ESP_EARLY_LOGV(TAG, "M2C DIR"); if (flags & ESP_CACHE_MSYNC_FLAG_UNALIGNED) { ESP_RETURN_ON_FALSE_ISR(false, ESP_ERR_INVALID_ARG, TAG, "M2C direction doesn't allow ESP_CACHE_MSYNC_FLAG_UNALIGNED"); } esp_os_enter_critical_safe(&s_spinlock); //Add preload feature / flag here, IDF-7800 valid = cache_hal_invalidate_addr(vaddr, size); esp_os_exit_critical_safe(&s_spinlock); assert(valid); } else { ESP_EARLY_LOGV(TAG, "C2M DIR"); if (flags & ESP_CACHE_MSYNC_FLAG_TYPE_INST) { ESP_RETURN_ON_FALSE_ISR(false, ESP_ERR_INVALID_ARG, TAG, "C2M direction doesn't support instruction type"); } #if SOC_CACHE_WRITEBACK_SUPPORTED esp_os_enter_critical_safe(&s_spinlock); valid = cache_hal_writeback_addr(vaddr, size); esp_os_exit_critical_safe(&s_spinlock); assert(valid); if (flags & ESP_CACHE_MSYNC_FLAG_INVALIDATE) { esp_os_enter_critical_safe(&s_spinlock); valid &= cache_hal_invalidate_addr(vaddr, size); esp_os_exit_critical_safe(&s_spinlock); } assert(valid); #endif } return ESP_OK; } esp_err_t esp_cache_aligned_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size) { ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer"); uint32_t cache_level = CACHE_LL_LEVEL_INT_MEM; uint32_t heap_caps = 0; uint32_t data_cache_line_size = 0; void *ptr = NULL; if (flags & ESP_CACHE_MALLOC_FLAG_PSRAM) { cache_level = CACHE_LL_LEVEL_EXT_MEM; heap_caps |= MALLOC_CAP_SPIRAM; } else { heap_caps |= MALLOC_CAP_INTERNAL; if (flags & ESP_CACHE_MALLOC_FLAG_DMA) { heap_caps |= MALLOC_CAP_DMA; } } data_cache_line_size = cache_hal_get_cache_line_size(cache_level, CACHE_TYPE_DATA); if (data_cache_line_size == 0) { //default alignment data_cache_line_size = 4; } size = ALIGN_UP_BY(size, data_cache_line_size); ptr = heap_caps_aligned_alloc(data_cache_line_size, size, heap_caps); ESP_RETURN_ON_FALSE_ISR(ptr, ESP_ERR_NO_MEM, TAG, "no enough heap memory for (%"PRId32")B alignment", data_cache_line_size); *out_ptr = ptr; if (actual_size) { *actual_size = size; } return ESP_OK; } esp_err_t esp_cache_aligned_calloc(size_t n, size_t size, uint32_t flags, void **out_ptr, size_t *actual_size) { ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer"); esp_err_t ret = ESP_FAIL; size_t size_bytes = 0; bool ovf = false; ovf = __builtin_mul_overflow(n, size, &size_bytes); ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow"); void *ptr = NULL; ret = esp_cache_aligned_malloc(size_bytes, flags, &ptr, actual_size); if (ret == ESP_OK) { memset(ptr, 0, size_bytes); *out_ptr = ptr; } return ret; } esp_err_t esp_cache_get_alignment(uint32_t flags, size_t *out_alignment) { ESP_RETURN_ON_FALSE(out_alignment, ESP_ERR_INVALID_ARG, TAG, "null pointer"); uint32_t cache_level = CACHE_LL_LEVEL_INT_MEM; uint32_t data_cache_line_size = 0; if (flags & ESP_CACHE_MALLOC_FLAG_PSRAM) { cache_level = CACHE_LL_LEVEL_EXT_MEM; } data_cache_line_size = cache_hal_get_cache_line_size(cache_level, CACHE_TYPE_DATA); if (data_cache_line_size == 0) { //default alignment data_cache_line_size = 4; } *out_alignment = data_cache_line_size; return ESP_OK; }