/* * SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include "string.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_types.h" #include "esp_bit_defs.h" #include "esp_log.h" #include "../esp_psram_impl.h" #include "esp32s3/rom/ets_sys.h" #include "esp32s3/rom/spi_flash.h" #include "esp32s3/rom/opi_flash.h" #include "esp32s3/rom/cache.h" #include "soc/gpio_periph.h" #include "soc/io_mux_reg.h" #include "soc/syscon_reg.h" #include "esp_private/spi_flash_os.h" #include "esp_private/mspi_timing_tuning.h" #include "esp_private/esp_gpio_reserve.h" #define OPI_PSRAM_SYNC_READ 0x0000 #define OPI_PSRAM_SYNC_WRITE 0x8080 #define OPI_PSRAM_REG_READ 0x4040 #define OPI_PSRAM_REG_WRITE 0xC0C0 #define OCT_PSRAM_RD_CMD_BITLEN 16 #define OCT_PSRAM_WR_CMD_BITLEN 16 #define OCT_PSRAM_ADDR_BITLEN 32 #define OCT_PSRAM_RD_DUMMY_BITLEN (2*(10-1)) #define OCT_PSRAM_WR_DUMMY_BITLEN (2*(5-1)) #define OCT_PSRAM_CS1_IO MSPI_IOMUX_PIN_NUM_CS1 #define OCT_PSRAM_VENDOR_ID 0xD #define OCT_PSRAM_CS_SETUP_TIME 3 #define OCT_PSRAM_CS_HOLD_TIME 3 #define OCT_PSRAM_CS_ECC_HOLD_TIME 3 #define OCT_PSRAM_CS_HOLD_DELAY 2 #define OCT_PSRAM_PAGE_SIZE 2 //2 for 1024B #define OCT_PSRAM_ECC_ENABLE_MASK BIT(8) typedef struct { union { struct { uint8_t drive_str: 2; uint8_t read_latency: 3; uint8_t lt: 1; uint8_t rsvd0_1: 2; }; uint8_t val; } mr0; union { struct { uint8_t vendor_id: 5; uint8_t rsvd0_2: 3; }; uint8_t val; } mr1; union { struct { uint8_t density: 3; uint8_t dev_id: 2; uint8_t rsvd1_2: 2; uint8_t gb: 1; }; uint8_t val; } mr2; union { struct { uint8_t rsvd3_7: 5; uint8_t srf: 1; uint8_t vcc: 1; uint8_t rsvd0: 1; }; uint8_t val; } mr3; union { struct { uint8_t pasr: 3; uint8_t rf: 1; uint8_t rsvd3: 1; uint8_t wr_latency: 3; }; uint8_t val; } mr4; union { struct { uint8_t bl: 2; uint8_t bt: 1; uint8_t rsvd0_4: 5; }; uint8_t val; } mr8; } opi_psram_mode_reg_t; static const char* TAG = "octal_psram"; static uint32_t s_psram_size; //this stands for physical psram size in bytes static void s_config_psram_spi_phases(void); uint8_t esp_psram_impl_get_cs_io(void) { return OCT_PSRAM_CS1_IO; } /** * Initialise mode registers of the PSRAM */ static void s_init_psram_mode_reg(int spi_num, opi_psram_mode_reg_t *mode_reg_config) { esp_rom_spiflash_read_mode_t mode = ESP_ROM_SPIFLASH_OPI_DTR_MODE; int cmd_len = 16; uint32_t addr = 0x0; //0x0 is the MR0 register int addr_bit_len = 32; int dummy = OCT_PSRAM_RD_DUMMY_BITLEN; opi_psram_mode_reg_t mode_reg = {0}; int data_bit_len = 16; //read esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_READ, cmd_len, addr, addr_bit_len, dummy, NULL, 0, &mode_reg.mr0.val, data_bit_len, BIT(1), false); //modify mode_reg.mr0.lt = mode_reg_config->mr0.lt; mode_reg.mr0.read_latency = mode_reg_config->mr0.read_latency; mode_reg.mr0.drive_str = mode_reg_config->mr0.drive_str; //write esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_WRITE, cmd_len, addr, addr_bit_len, 0, &mode_reg.mr0.val, 16, NULL, 0, BIT(1), false); #if CONFIG_SPIRAM_ECC_ENABLE addr = 0x8; //0x8 is the MR8 register data_bit_len = 8; //read esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_READ, cmd_len, addr, addr_bit_len, dummy, NULL, 0, &mode_reg.mr8.val, data_bit_len, BIT(1), false); //modify mode_reg.mr8.bt = mode_reg_config->mr8.bt; mode_reg.mr8.bl = mode_reg_config->mr8.bl; //write esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_WRITE, cmd_len, addr, addr_bit_len, 0, &mode_reg.mr8.val, 16, NULL, 0, BIT(1), false); #endif } static void s_get_psram_mode_reg(int spi_num, opi_psram_mode_reg_t *out_reg) { esp_rom_spiflash_read_mode_t mode = ESP_ROM_SPIFLASH_OPI_DTR_MODE; int cmd_len = 16; int addr_bit_len = 32; int dummy = OCT_PSRAM_RD_DUMMY_BITLEN; int data_bit_len = 16; //Read MR0~1 register esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_READ, cmd_len, 0x0, addr_bit_len, dummy, NULL, 0, &out_reg->mr0.val, data_bit_len, BIT(1), false); //Read MR2~3 register esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_READ, cmd_len, 0x2, addr_bit_len, dummy, NULL, 0, &out_reg->mr2.val, data_bit_len, BIT(1), false); data_bit_len = 8; //Read MR4 register esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_READ, cmd_len, 0x4, addr_bit_len, dummy, NULL, 0, &out_reg->mr4.val, data_bit_len, BIT(1), false); //Read MR8 register esp_rom_opiflash_exec_cmd(spi_num, mode, OPI_PSRAM_REG_READ, cmd_len, 0x8, addr_bit_len, dummy, NULL, 0, &out_reg->mr8.val, data_bit_len, BIT(1), false); } static void s_print_psram_info(opi_psram_mode_reg_t *reg_val) { ESP_EARLY_LOGI(TAG, "vendor id : 0x%02x (%s)", reg_val->mr1.vendor_id, reg_val->mr1.vendor_id == 0x0d ? "AP" : "UNKNOWN"); ESP_EARLY_LOGI(TAG, "dev id : 0x%02x (generation %d)", reg_val->mr2.dev_id, reg_val->mr2.dev_id + 1); ESP_EARLY_LOGI(TAG, "density : 0x%02x (%d Mbit)", reg_val->mr2.density, reg_val->mr2.density == 0x1 ? 32 : reg_val->mr2.density == 0X3 ? 64 : reg_val->mr2.density == 0x5 ? 128 : reg_val->mr2.density == 0x7 ? 256 : 0); ESP_EARLY_LOGI(TAG, "good-die : 0x%02x (%s)", reg_val->mr2.gb, reg_val->mr2.gb == 1 ? "Pass" : "Fail"); ESP_EARLY_LOGI(TAG, "Latency : 0x%02x (%s)", reg_val->mr0.lt, reg_val->mr0.lt == 1 ? "Fixed" : "Variable"); ESP_EARLY_LOGI(TAG, "VCC : 0x%02x (%s)", reg_val->mr3.vcc, reg_val->mr3.vcc == 1 ? "3V" : "1.8V"); ESP_EARLY_LOGI(TAG, "SRF : 0x%02x (%s Refresh)", reg_val->mr3.srf, reg_val->mr3.srf == 0x1 ? "Fast" : "Slow"); ESP_EARLY_LOGI(TAG, "BurstType : 0x%02x (%s Wrap)", reg_val->mr8.bt, reg_val->mr8.bt == 1 && reg_val->mr8.bl != 3 ? "Hybrid" : ""); ESP_EARLY_LOGI(TAG, "BurstLen : 0x%02x (%d Byte)", reg_val->mr8.bl, reg_val->mr8.bl == 0x00 ? 16 : reg_val->mr8.bl == 0x01 ? 32 : reg_val->mr8.bl == 0x10 ? 64 : 1024); ESP_EARLY_LOGI(TAG, "Readlatency : 0x%02x (%d cycles@%s)", reg_val->mr0.read_latency, reg_val->mr0.read_latency * 2 + 6, reg_val->mr0.lt == 1 ? "Fixed" : "Variable"); ESP_EARLY_LOGI(TAG, "DriveStrength: 0x%02x (1/%d)", reg_val->mr0.drive_str, reg_val->mr0.drive_str == 0x00 ? 1 : reg_val->mr0.drive_str == 0x01 ? 2 : reg_val->mr0.drive_str == 0x02 ? 4 : 8); } static void s_set_psram_cs_timing(void) { //SPI0/1 share the cs_hold / cs_setup, cd_hold_time / cd_setup_time, cs_hold_delay registers for PSRAM, so we only need to set SPI0 related registers here SET_PERI_REG_MASK(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_HOLD_M | SPI_MEM_SPI_SMEM_CS_SETUP_M); SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_HOLD_TIME_V, OCT_PSRAM_CS_HOLD_TIME, SPI_MEM_SPI_SMEM_CS_HOLD_TIME_S); SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_SETUP_TIME_V, OCT_PSRAM_CS_SETUP_TIME, SPI_MEM_SPI_SMEM_CS_SETUP_TIME_S); #if CONFIG_SPIRAM_ECC_ENABLE SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_ECC_CS_HOLD_TIME_V, OCT_PSRAM_CS_ECC_HOLD_TIME, SPI_MEM_SPI_SMEM_ECC_CS_HOLD_TIME_S); #endif //CS1 high time SET_PERI_REG_BITS(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_CS_HOLD_DELAY_V, OCT_PSRAM_CS_HOLD_DELAY, SPI_MEM_SPI_SMEM_CS_HOLD_DELAY_S); } static void s_init_psram_pins(void) { //Set cs1 pin function PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[OCT_PSRAM_CS1_IO], FUNC_SPICS1_SPICS1); //Set mspi cs1 drive strength PIN_SET_DRV(GPIO_PIN_MUX_REG[OCT_PSRAM_CS1_IO], 3); //Set psram clock pin drive strength REG_SET_FIELD(SPI_MEM_DATE_REG(0), SPI_MEM_SPI_SMEM_SPICLK_FUN_DRV, 3); // Preserve psram pins esp_gpio_reserve(BIT64(OCT_PSRAM_CS1_IO)); } /** * Enable error correcting code feature * * Can add an input parameter for selecting ECC mode if needed */ static void s_configure_psram_ecc(void) { #if CONFIG_SPIRAM_ECC_ENABLE //Clear this bit to use ECC 16to17 mode CLEAR_PERI_REG_MASK(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_ECC_16TO18_BYTE_EN_M); SET_PERI_REG_BITS(SYSCON_SPI_MEM_ECC_CTRL_REG, SYSCON_SRAM_PAGE_SIZE_V, OCT_PSRAM_PAGE_SIZE, SYSCON_SRAM_PAGE_SIZE_S); SET_PERI_REG_MASK(SPI_MEM_SPI_SMEM_AC_REG(0), SPI_MEM_SPI_SMEM_ECC_SKIP_PAGE_CORNER_M); /** * Enable ECC region 0 (ACE0) * Default: ACE0 range: 0 ~ 256MB * Current Octal PSRAM is 8MB, ACE0 is enough */ SET_PERI_REG_MASK(SYSCON_SRAM_ACE0_ATTR_REG, OCT_PSRAM_ECC_ENABLE_MASK); ESP_EARLY_LOGI(TAG, "ECC is enabled"); #else CLEAR_PERI_REG_MASK(SYSCON_SRAM_ACE0_ATTR_REG, OCT_PSRAM_ECC_ENABLE_MASK); #endif } esp_err_t esp_psram_impl_enable(void) { s_init_psram_pins(); s_set_psram_cs_timing(); s_configure_psram_ecc(); //enter MSPI slow mode to init PSRAM device registers mspi_timing_enter_low_speed_mode(true); //set to variable dummy mode SET_PERI_REG_MASK(SPI_MEM_DDR_REG(1), SPI_MEM_SPI_FMEM_VAR_DUMMY); esp_rom_spi_set_dtr_swap_mode(1, false, false); //Set PSRAM read latency and drive strength static opi_psram_mode_reg_t mode_reg = {0}; mode_reg.mr0.lt = 1; mode_reg.mr0.read_latency = 2; mode_reg.mr0.drive_str = 0; mode_reg.mr8.bl = 3; mode_reg.mr8.bt = 0; s_init_psram_mode_reg(1, &mode_reg); //Print PSRAM info s_get_psram_mode_reg(1, &mode_reg); if (mode_reg.mr1.vendor_id != OCT_PSRAM_VENDOR_ID) { ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x, PSRAM chip not found or not supported, or wrong PSRAM line mode", mode_reg.mr1.vendor_id); return ESP_ERR_NOT_SUPPORTED; } s_print_psram_info(&mode_reg); s_psram_size = mode_reg.mr2.density == 0x1 ? PSRAM_SIZE_4MB : mode_reg.mr2.density == 0X3 ? PSRAM_SIZE_8MB : mode_reg.mr2.density == 0x5 ? PSRAM_SIZE_16MB : mode_reg.mr2.density == 0x7 ? PSRAM_SIZE_32MB : mode_reg.mr2.density == 0x6 ? PSRAM_SIZE_64MB : 0; //Do PSRAM timing tuning, we use SPI1 to do the tuning, and set the SPI0 PSRAM timing related registers accordingly mspi_timing_psram_tuning(); //Back to the high speed mode. Flash/PSRAM clocks are set to the clock that user selected. SPI0/1 registers are all set correctly mspi_timing_enter_high_speed_mode(true); /** * Tuning may change SPI1 regs, whereas legacy spi_flash APIs rely on these regs. * This function is to restore SPI1 init state. */ spi_flash_set_rom_required_regs(); //Flash chip requires MSPI specifically, call this function to set them spi_flash_set_vendor_required_regs(); s_config_psram_spi_phases(); return ESP_OK; } //Configure PSRAM SPI0 phase related registers here according to the PSRAM chip requirement static void s_config_psram_spi_phases(void) { //Config Write CMD phase for SPI0 to access PSRAM SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_SRAM_USR_WCMD_M); SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN, OCT_PSRAM_WR_CMD_BITLEN - 1, SPI_MEM_CACHE_SRAM_USR_WR_CMD_BITLEN_S); SET_PERI_REG_BITS(SPI_MEM_SRAM_DWR_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE, OPI_PSRAM_SYNC_WRITE, SPI_MEM_CACHE_SRAM_USR_WR_CMD_VALUE_S); //Config Read CMD phase for SPI0 to access PSRAM SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_SRAM_USR_RCMD_M); SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_V, OCT_PSRAM_RD_CMD_BITLEN - 1, SPI_MEM_CACHE_SRAM_USR_RD_CMD_BITLEN_S); SET_PERI_REG_BITS(SPI_MEM_SRAM_DRD_CMD_REG(0), SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_V, OPI_PSRAM_SYNC_READ, SPI_MEM_CACHE_SRAM_USR_RD_CMD_VALUE_S); //Config ADDR phase SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_ADDR_BITLEN_V, OCT_PSRAM_ADDR_BITLEN - 1, SPI_MEM_SRAM_ADDR_BITLEN_S); SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_CACHE_USR_SCMD_4BYTE_M); //Config RD/WR Dummy phase SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_USR_RD_SRAM_DUMMY_M | SPI_MEM_USR_WR_SRAM_DUMMY_M); SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_RDUMMY_CYCLELEN_V, OCT_PSRAM_RD_DUMMY_BITLEN - 1, SPI_MEM_SRAM_RDUMMY_CYCLELEN_S); SET_PERI_REG_MASK(SPI_MEM_SPI_SMEM_DDR_REG(0), SPI_MEM_SPI_SMEM_VAR_DUMMY_M); SET_PERI_REG_BITS(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_WDUMMY_CYCLELEN_V, OCT_PSRAM_WR_DUMMY_BITLEN - 1, SPI_MEM_SRAM_WDUMMY_CYCLELEN_S); CLEAR_PERI_REG_MASK(SPI_MEM_SPI_SMEM_DDR_REG(0), SPI_MEM_SPI_SMEM_DDR_WDAT_SWP_M | SPI_MEM_SPI_SMEM_DDR_RDAT_SWP_M); SET_PERI_REG_MASK(SPI_MEM_SPI_SMEM_DDR_REG(0), SPI_MEM_SPI_SMEM_DDR_EN_M); SET_PERI_REG_MASK(SPI_MEM_SRAM_CMD_REG(0), SPI_MEM_SDUMMY_OUT_M | SPI_MEM_SCMD_OCT_M | SPI_MEM_SADDR_OCT_M | SPI_MEM_SDOUT_OCT_M | SPI_MEM_SDIN_OCT_M); SET_PERI_REG_MASK(SPI_MEM_CACHE_SCTRL_REG(0), SPI_MEM_SRAM_OCT_M); Cache_Resume_DCache(0); } /*--------------------------------------------------------------------------------- * Following APIs are not required to be IRAM-Safe * * Consider moving these to another file if this kind of APIs grows dramatically *-------------------------------------------------------------------------------*/ esp_err_t esp_psram_impl_get_physical_size(uint32_t *out_size_bytes) { if (!out_size_bytes) { return ESP_ERR_INVALID_ARG; } *out_size_bytes = s_psram_size; return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE); } /** * This function is to get the available physical psram size in bytes. * If ECC is enabled, available PSRAM size will be 15/16 times its physical size. */ esp_err_t esp_psram_impl_get_available_size(uint32_t *out_size_bytes) { if (!out_size_bytes) { return ESP_ERR_INVALID_ARG; } #if CONFIG_SPIRAM_ECC_ENABLE *out_size_bytes = s_psram_size * 15 / 16; #else *out_size_bytes = s_psram_size; #endif return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE); }