/* * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /* * Unit tests for FreeRTOS task yielding */ #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "unity.h" #include "test_utils.h" static QueueHandle_t yield_task_sequence; static volatile bool task_sequence_ready; static volatile uint32_t count; static SemaphoreHandle_t mutex; /* * Test yielding for same priority tasks on the same core. * * The test performs the following actions: * - Creates 2 tasks with the same priority on the same core. * - Each task pushes its task_id on to a queue and then yields. * - Unity task checks the sequence of the tasks run once the yield_tasks are done. */ static void yield_task1(void *arg) { /* Set the task sequence flag once yield_task1 runs */ task_sequence_ready = true; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Yield */ taskYIELD(); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } static void yield_task2(void *arg) { /* Wait for the other task to run for the test to begin */ while (!task_sequence_ready) { taskYIELD(); }; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Yield */ taskYIELD(); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } TEST_CASE("Task yield must run the next ready task of the same priority", "[freertos]") { /* Reset task count */ count = 0; /* Reset task sequence flag */ task_sequence_ready = false; /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ xTaskCreatePinnedToCore(yield_task1, "yield_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU); xTaskCreatePinnedToCore(yield_task2, "yield_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU); /* Wait for the tasks to finish up */ while (count != 2) { vTaskDelay(10); } /* Verify that the yield is successful and the next ready task is run */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); } /* * Test yielding behavior when a task is blocked * * The test performs the following actions: * - Creates 2 tasks with the same priority on the same core. * - One task blocks on a mutex. * - Second task does not contest for a mutex and yields. * - Unity task verifies that the blocked task is not scheduled unless it is ready to run. */ static void test_task1(void *arg) { /* Set the task sequence flag once test_task1 runs */ task_sequence_ready = true; uint32_t task_id = (uint32_t)arg; /* Block on mutex taken by the unity task */ TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(mutex, portMAX_DELAY)); /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Release mutex */ TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(mutex)); /* Delete itself */ vTaskDelete(NULL); } static void test_task2(void *arg) { /* Wait for the other task to run for the test to begin */ while (!task_sequence_ready) { taskYIELD(); }; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Yield */ taskYIELD(); /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } TEST_CASE("Task yield must not run a blocked task", "[freertos]") { /* Reset task count */ count = 0; /* Reset task sequence flag */ task_sequence_ready = false; /* Create mutex and acquire it */ mutex = xSemaphoreCreateMutex(); TEST_ASSERT_NOT_EQUAL(NULL, mutex); TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(mutex, portMAX_DELAY)); /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ xTaskCreatePinnedToCore(test_task1, "test_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU); xTaskCreatePinnedToCore(test_task2, "test_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU); /* Wait for at least one of the tasks to finish up */ while (count == 0) { vTaskDelay(10); } /* Verify that the yield results in the same task running again and not the blocked task */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Verify that the task yield did not result in a context switch */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Release mutex */ TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(mutex)); /* Wait for the second task to finish up */ while (count != 2) { vTaskDelay(10); } /* Verify that the second task is scheduled once it is unblocked */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Cleanup mutex */ vSemaphoreDelete(mutex); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); } /* * Test yielding behavior when the scheduler is suspended * * The test performs the following actions: * - Creates 2 tasks with the same priority on the same core. * - One task suspends the scheduler and then yields. * - Unity task verifies that the yield does not happen until the scheduler is resumed. */ static void test_critical_task1(void *arg) { /* Set the task sequence flag once test_critical_task1 runs */ task_sequence_ready = true; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Suspend scheduler */ vTaskSuspendAll(); /* Yield */ taskYIELD(); /* Store task_id on queue again */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Resume scheduler */ xTaskResumeAll(); /* Delete itself */ vTaskDelete(NULL); } static void test_critical_task2(void *arg) { /* Wait for the other task to run for the test to begin */ while (!task_sequence_ready) { taskYIELD(); }; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } TEST_CASE("Task yield must not happen when scheduler is suspended", "[freertos]") { /* Reset task count */ count = 0; /* Reset task sequence flag */ task_sequence_ready = false; /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ xTaskCreatePinnedToCore(test_critical_task1, "test_critical_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU); xTaskCreatePinnedToCore(test_critical_task2, "test_critical_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU); /* Wait for at least one of the tasks to finish up */ while (count == 0) { vTaskDelay(10); } /* Verify that the first task runs */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Verify that the task yield when the scheduler is suspended did not result in a context switch */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Wait for the second task to finish up */ while (count != 2) { vTaskDelay(10); } /* Verify that the second task is scheduled once the scheduler is resumed */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); } /* * Test yielding behavior when a lower priority task creates a higher priority task * * The test performs the following actions: * - Creates a task with a priority higher than the unity task. * - Unity task verifies that it yields immediately to the newly created task. */ static void high_prio_task(void *arg) { uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } TEST_CASE("Lower priority task must yield immediately on creation of higher priority task", "[freertos]") { /* Reset task count */ count = 0; /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ xTaskCreatePinnedToCore(high_prio_task, "high_prio_task", 2048, (void *)1, UNITY_FREERTOS_PRIORITY + 1, NULL, UNITY_FREERTOS_CPU); uint32_t unity_task_id = 2; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &unity_task_id, 0)); /* Wait for the newly created task to finish up */ while (count == 0) { vTaskDelay(10); } /* Verify that the unity task yields as soon as a higher prio task is created */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Verify that the unity task_id is stored after the higher priority task runs */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); } /* * Test yielding behavior when a lower priority task raises the priority of another task * * The test performs the following actions: * - Creates a task with a priority lower than the unity task. * - Unity task raises the priority of the newly created task. * - Unity task verifies that it yields once the priority is raised. */ static void low_prio_task(void *arg) { uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } TEST_CASE("Lower priority task must yield immediately when the priority of another task is raised", "[freertos]") { /* Reset task count */ count = 0; /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ TaskHandle_t task_handle; xTaskCreatePinnedToCore(low_prio_task, "low_prio_task", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, &task_handle, UNITY_FREERTOS_CPU); uint32_t unity_task_id = 2; /* Store unity task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &unity_task_id, 0)); /* Raise the priority of the lower priority task */ vTaskPrioritySet(task_handle, UNITY_FREERTOS_PRIORITY + 1); /* Store unity task_id on queue again */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &unity_task_id, 0)); /* Wait for at least the task to finish up */ while (count == 0) { vTaskDelay(10); } /* Verify that the unity task does not yield to a lower priority task when it is created */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Verify that the unity task_id yielded once the priority of the lower priority task is raised */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Verify that the unity task_id is stored again once the other task finishes up */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); } #if (portNUM_PROCESSORS > 1) && !(CONFIG_FREERTOS_UNICORE) /* * Test yielding behavior when a task on one core forces an yield on the other core * * The test performs the following actions: * - Creates 2 tasks with the same priority on the core on which unity task is not running. * - One task spins and does not let the other task run. * - Force a cross-core yield from the unity task. * - Verify that the cross-core yield happens and the second task is scheduled to run. */ static void other_core_task1(void *arg) { /* Set the task sequence flag once other_core_task1 runs */ task_sequence_ready = true; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); while (1) { } } static void other_core_task2(void *arg) { /* Wait for the other task to run for the test to begin */ while (!task_sequence_ready) { taskYIELD(); }; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); while (1) { } } TEST_CASE("Task yield on other core can go through", "[freertos]") { TaskHandle_t other_core_taskhandle1; TaskHandle_t other_core_taskhandle2; /* Reset task sequence flag */ task_sequence_ready = false; /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ xTaskCreatePinnedToCore(other_core_task1, "test_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, &other_core_taskhandle1, !UNITY_FREERTOS_CPU); xTaskCreatePinnedToCore(other_core_task2, "test_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, &other_core_taskhandle2, !UNITY_FREERTOS_CPU); /* Wait for everything to be setup */ vTaskDelay(10); /* Verify that other_core_task1 runs */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Force an yield on the other core */ #if CONFIG_FREERTOS_SMP portYIELD_CORE(!UNITY_FREERTOS_CPU); #else vPortYieldOtherCore(!UNITY_FREERTOS_CPU); #endif /* Verify that other_core_task1 yields and other_core_task2 runs */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); /* Cleanup test tasks */ vTaskDelete(other_core_taskhandle1); vTaskDelete(other_core_taskhandle2); } #if !CONFIG_FREERTOS_SMP static volatile bool yield_triggered = false; /* * Test cross-core yielding behavior when the scheduler is suspended * * The test performs the following actions: * - Creates 2 tasks with the same priority on the other core. * - One task suspends the scheduler. * - Unity task forces a cross-core yield. * - Unity task verifies that the yield does not happen until the scheduler is resumed. * * Note: This test case is not valid when FreeRTOS SMP is used as the scheduler suspension * is not per core but across cores and hence the test cannot be executed. */ static void other_core_critical_task1(void *arg) { /* Set the task sequence flag once other_core_critical_task1 runs */ task_sequence_ready = true; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Suspend scheduler*/ vTaskSuspendAll(); /* Store task_id on queue again */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; while (!yield_triggered) { } /* Resume scheduler */ xTaskResumeAll(); /* Delete itself */ vTaskDelete(NULL); } static void other_core_critical_task2(void *arg) { /* Wait for the other task to run for the test to begin */ while (!task_sequence_ready) { taskYIELD(); }; uint32_t task_id = (uint32_t)arg; /* Store task_id on queue */ TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0)); /* Increment task count to notify unity task */ count++; /* Delete itself */ vTaskDelete(NULL); } TEST_CASE("Task yield on other core must not happen when scheduler is suspended", "[freertos]") { /* Reset task count */ count = 0; /* Reset task sequence flag */ task_sequence_ready = false; /* Create task yielding sequence queue */ yield_task_sequence = xQueueCreate(3, sizeof(uint32_t)); TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence); /* Create test tasks */ xTaskCreatePinnedToCore(other_core_critical_task1, "other_core_critical_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, !UNITY_FREERTOS_CPU); xTaskCreatePinnedToCore(other_core_critical_task2, "other_core_critical_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, !UNITY_FREERTOS_CPU); /* Wait for at least one of the tasks to finish up */ while (count == 0) { vTaskDelay(10); } /* Force an yield on the other core */ vPortYieldOtherCore(!UNITY_FREERTOS_CPU); /* Set yield triggered flag */ yield_triggered = true; /* Verify that the first task runs */ uint32_t task_id; TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Verify that the task yield when the scheduler is suspended did not result in a context switch */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(1, task_id); /* Wait for the second task to finish up */ while (count != 2) { vTaskDelay(10); } /* Verify that the second task is scheduled once the critical section is over */ TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0)); TEST_ASSERT_EQUAL(2, task_id); /* Cleanup yield sequence queue */ vQueueDelete(yield_task_sequence); } #endif // !CONFIG_FREERTOS_SMP #endif // (portNUM_PROCESSORS > 1) && !(CONFIG_FREERTOS_UNICORE)