/* * SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "assert.h" #include "esp_types.h" #include "esp_err.h" #include "esp_check.h" #include "esp_heap_caps.h" #include "esp_efuse.h" #include "esp_efuse_table.h" #include "esp_efuse_rtc_table.h" #include "hal/adc_types.h" #include "soc/efuse_periph.h" #include "soc/soc_caps.h" #include "esp_adc/adc_cali_scheme.h" #include "adc_cali_interface.h" const __attribute__((unused)) static char *TAG = "adc_cali"; /* ------------------------ Characterization Constants ---------------------- */ // coeff_a and coeff_b are actually floats // they are scaled to put them into uint32_t so that the headers do not have to be changed static const int coeff_a_scaling = 65536; static const int coeff_b_scaling = 1024; /* -------------------- Characterization Helper Data Types ------------------ */ typedef struct { int adc_calib_high; int adc_calib_low; } adc_calib_data_ver1_t; typedef struct { int adc_calib_high; // the reading of adc ... int adc_calib_high_voltage; // ... at this voltage (mV) } adc_calib_data_ver2_t; typedef struct { char version_num; adc_unit_t unit_id; adc_atten_t atten_level; union { adc_calib_data_ver1_t ver1; adc_calib_data_ver2_t ver2; } efuse_data; } adc_calib_parsed_info_t; /* ------------------------ Context Structure--------------------------- */ typedef struct { adc_unit_t unit_id; ///< ADC unit adc_atten_t atten; ///< ADC attenuation uint32_t coeff_a; ///< Gradient of ADC-Voltage curve uint32_t coeff_b; ///< Offset of ADC-Voltage curve } cali_chars_line_fitting_t; /* ----------------------- Characterization Functions ----------------------- */ static bool prepare_calib_data_for(adc_unit_t unit_id, adc_atten_t atten, adc_calib_parsed_info_t *parsed_data_storage); /** * (Used in V1 of calibration scheme) * The Two Point calibration measures the reading at two specific input voltages, and calculates the (assumed linear) relation * between input voltage and ADC response. (Response = A * Vinput + B) * A and B are scaled ints. * @param high The ADC response at the higher voltage of the corresponding attenuation (600mV, 800mV, 1000mV, 2000mV). * @param low The ADC response at the lower voltage of the corresponding attenuation (all 250mV). * */ static void characterize_using_two_point(adc_unit_t unit_id, adc_atten_t atten, uint32_t high, uint32_t low, uint32_t *coeff_a, uint32_t *coeff_b); /* * Estimate the (assumed) linear relationship btwn the measured raw value and the voltage * with the previously done measurement when the chip was manufactured. * */ static bool calculate_characterization_coefficients(const adc_calib_parsed_info_t *parsed_data, cali_chars_line_fitting_t *ctx); /* ------------------------ Interface Functions --------------------------- */ static esp_err_t cali_raw_to_voltage(void *arg, int raw, int *voltage); /* ------------------------- Public API ------------------------------------- */ esp_err_t adc_cali_create_scheme_line_fitting(const adc_cali_line_fitting_config_t *config, adc_cali_handle_t *ret_handle) { esp_err_t ret = ESP_OK; ESP_RETURN_ON_FALSE(config && ret_handle, ESP_ERR_INVALID_ARG, TAG, "invalid arg: null pointer"); ESP_RETURN_ON_FALSE(config->unit_id < SOC_ADC_PERIPH_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid ADC unit"); ESP_RETURN_ON_FALSE(config->atten < SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid ADC attenuation"); //S2 Oneshot read only supports 13 bits, DMA read only supports 12 bits ESP_RETURN_ON_FALSE(((config->bitwidth == SOC_ADC_RTC_MAX_BITWIDTH || config->bitwidth == SOC_ADC_DIGI_MAX_BITWIDTH) || config->bitwidth == ADC_BITWIDTH_DEFAULT), ESP_ERR_INVALID_ARG, TAG, "invalid bitwidth"); // current version only accepts encoding ver 1 and ver 2. uint8_t adc_encoding_version = esp_efuse_rtc_table_read_calib_version(); ESP_RETURN_ON_FALSE(((adc_encoding_version == 1) || (adc_encoding_version == 2)), ESP_ERR_NOT_SUPPORTED, TAG, "Calibration required eFuse bits not burnt"); adc_cali_scheme_t *scheme = (adc_cali_scheme_t *)heap_caps_calloc(1, sizeof(adc_cali_scheme_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); ESP_RETURN_ON_FALSE(scheme, ESP_ERR_NO_MEM, TAG, "no mem for adc calibration scheme"); cali_chars_line_fitting_t *chars = (cali_chars_line_fitting_t *)heap_caps_calloc(1, sizeof(cali_chars_line_fitting_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); ESP_GOTO_ON_FALSE(chars, ESP_ERR_NO_MEM, err, TAG, "no memory for the calibration characteristics"); scheme->raw_to_voltage = cali_raw_to_voltage; scheme->ctx = chars; adc_calib_parsed_info_t efuse_parsed_data = {0}; bool success = prepare_calib_data_for(config->unit_id, config->atten, &efuse_parsed_data); assert(success); success = calculate_characterization_coefficients(&efuse_parsed_data, chars); assert(success); ESP_LOGD(TAG, "adc%d (atten leven %d) calibration done: A:%" PRId32" B:%" PRId32, config->unit_id, config->atten, chars->coeff_a, chars->coeff_b); chars->unit_id = config->unit_id; chars->atten = config->atten; *ret_handle = scheme; return ESP_OK; err: if (scheme) { free(scheme); } return ret; } esp_err_t adc_cali_delete_scheme_line_fitting(adc_cali_handle_t handle) { ESP_RETURN_ON_FALSE(handle, ESP_ERR_INVALID_ARG, TAG, "invalid argument: null pointer"); free(handle->ctx); handle->ctx = NULL; free(handle); handle = NULL; return ESP_OK; } /* ------------------------ Interface Functions --------------------------- */ static esp_err_t cali_raw_to_voltage(void *arg, int raw, int *voltage) { //pointers are checked in the upper layer cali_chars_line_fitting_t *ctx = arg; *voltage = raw * ctx->coeff_a / coeff_a_scaling + ctx->coeff_b / coeff_b_scaling; return ESP_OK; } /* ----------------------- Characterization Functions ----------------------- */ static bool prepare_calib_data_for(adc_unit_t unit_id, adc_atten_t atten, adc_calib_parsed_info_t *parsed_data_storage) { int version_num = esp_efuse_rtc_table_read_calib_version(); int tag; parsed_data_storage->version_num = version_num; parsed_data_storage->unit_id = unit_id; parsed_data_storage->atten_level = atten; switch (version_num) { case 1: // note: use the unit_id as in hal, which start from 0. tag = esp_efuse_rtc_table_get_tag(version_num, unit_id, atten, RTCCALIB_V1_PARAM_VLOW); parsed_data_storage->efuse_data.ver1.adc_calib_low = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false); tag = esp_efuse_rtc_table_get_tag(version_num, unit_id, atten, RTCCALIB_V1_PARAM_VHIGH); parsed_data_storage->efuse_data.ver1.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false); break; case 2: tag = esp_efuse_rtc_table_get_tag(version_num, unit_id, atten, RTCCALIB_V2_PARAM_VHIGH); parsed_data_storage->efuse_data.ver2.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false); switch (parsed_data_storage->atten_level) { case ADC_ATTEN_DB_0: parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 600; break; case ADC_ATTEN_DB_2_5: parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 800; break; case ADC_ATTEN_DB_6: parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 1000; break; case ADC_ATTEN_DB_11: parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 2000; break; default: break; } break; default: // fall back to case 1 with zeros as params. parsed_data_storage->version_num = 1; tag = esp_efuse_rtc_table_get_tag(version_num, unit_id, atten, RTCCALIB_V1_PARAM_VLOW); parsed_data_storage->efuse_data.ver1.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, true); tag = esp_efuse_rtc_table_get_tag(version_num, unit_id, atten, RTCCALIB_V1_PARAM_VHIGH); parsed_data_storage->efuse_data.ver1.adc_calib_low = esp_efuse_rtc_table_get_parsed_efuse_value(tag, true); break; } return true; } /** * (Used in V1 of calibration scheme) * The Two Point calibration measures the reading at two specific input voltages, and calculates the (assumed linear) relation * between input voltage and ADC response. (Response = A * Vinput + B) * A and B are scaled ints. * @param high The ADC response at the higher voltage of the corresponding attenuation (600mV, 800mV, 1000mV, 2000mV). * @param low The ADC response at the lower voltage of the corresponding attenuation (all 250mV). * */ static void characterize_using_two_point(adc_unit_t unit_id, adc_atten_t atten, uint32_t high, uint32_t low, uint32_t *coeff_a, uint32_t *coeff_b) { // once we have recovered the reference high(Dhigh) and low(Dlow) readings, we can calculate a and b from // the measured high and low readings static const uint32_t v_high[] = {600, 800, 1000, 2000}; static const uint32_t v_low = 250; *coeff_a = coeff_a_scaling * (v_high[atten] - v_low) / (high - low); *coeff_b = coeff_b_scaling * (v_low * high - v_high[atten] * low) / (high - low); } /* * Estimate the (assumed) linear relationship btwn the measured raw value and the voltage * with the previously done measurement when the chip was manufactured. * */ static bool calculate_characterization_coefficients(const adc_calib_parsed_info_t *parsed_data, cali_chars_line_fitting_t *ctx) { switch (parsed_data->version_num) { case 1: ESP_LOGD(TAG, "Calib V1, low%dmV, high%dmV", parsed_data->efuse_data.ver1.adc_calib_low, parsed_data->efuse_data.ver1.adc_calib_high); characterize_using_two_point(parsed_data->unit_id, parsed_data->atten_level, parsed_data->efuse_data.ver1.adc_calib_high, parsed_data->efuse_data.ver1.adc_calib_low, &(ctx->coeff_a), &(ctx->coeff_b)); break; case 2: ESP_LOGD(TAG, "Calib V2, volt%dmV", parsed_data->efuse_data.ver2.adc_calib_high); ctx->coeff_a = coeff_a_scaling * parsed_data->efuse_data.ver2.adc_calib_high_voltage / parsed_data->efuse_data.ver2.adc_calib_high; ctx->coeff_b = 0; break; default: return false; break; } return true; }