/* Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if we add more types of external RAM memory, this can be made into a more intelligent dispatcher. */ // Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_err.h" #include "esp32s2/spiram.h" #include "spiram_psram.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "soc/soc.h" #include "esp_heap_caps_init.h" #include "soc/soc_memory_layout.h" #include "soc/dport_reg.h" #include "esp32s2/rom/cache.h" #include "soc/cache_memory.h" #include "soc/extmem_reg.h" #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL #if CONFIG_SPIRAM static const char* TAG = "spiram"; #if CONFIG_SPIRAM_SPEED_40M #define PSRAM_SPEED PSRAM_CACHE_S40M #elif CONFIG_SPIRAM_SPEED_80M #define PSRAM_SPEED PSRAM_CACHE_S80M #else #define PSRAM_SPEED PSRAM_CACHE_S20M #endif static bool spiram_inited=false; #define DRAM0_ONLY_CACHE_SIZE BUS_IRAM0_CACHE_SIZE #define DRAM0_DRAM1_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE) #define DRAM0_DRAM1_DPORT_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE + BUS_DPORT_CACHE_SIZE) #define SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT (spiram_size - DRAM0_DRAM1_DPORT_CACHE_SIZE) #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY extern uint8_t _ext_ram_bss_start, _ext_ram_bss_end; #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1)) #define EXT_BSS_SIZE ((uint32_t)(&_ext_ram_bss_end - &_ext_ram_bss_start)) #define EXT_BSS_PAGE_ALIGN_SIZE (ALIGN_UP_BY(EXT_BSS_SIZE, 0x10000)) #endif #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY #define SPIRAM_MAP_PADDR_START EXT_BSS_PAGE_ALIGN_SIZE #define FREE_DRAM0_DRAM1_DPORT_CACHE_START (DPORT_CACHE_ADDRESS_LOW + EXT_BSS_PAGE_ALIGN_SIZE) #define FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE (DRAM0_DRAM1_DPORT_CACHE_SIZE - EXT_BSS_PAGE_ALIGN_SIZE) #else #define SPIRAM_MAP_PADDR_START 0 #define FREE_DRAM0_DRAM1_DPORT_CACHE_START (DPORT_CACHE_ADDRESS_LOW) #define FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE (DRAM0_DRAM1_DPORT_CACHE_SIZE) #endif // if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY #define SPIRAM_MAP_VADDR_START (DRAM0_CACHE_ADDRESS_HIGH - spiram_map_size) #define SPIRAM_MAP_SIZE spiram_map_size static uint32_t next_map_page_num = 0; static uint32_t instruction_in_spiram = 0; static uint32_t rodata_in_spiram = 0; static size_t spiram_size = 0; static size_t spiram_map_size = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS static int instr_flash2spiram_offs = 0; static uint32_t instr_start_page = 0; static uint32_t instr_end_page = 0; #endif #if CONFIG_SPIRAM_RODATA static int rodata_flash2spiram_offs = 0; static uint32_t rodata_start_page = 0; static uint32_t rodata_end_page = 0; #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA static uint32_t page0_mapped = 0; static uint32_t page0_page = INVALID_PHY_PAGE; #endif void IRAM_ATTR esp_spiram_init_cache(void) { spiram_map_size = spiram_size; Cache_Suspend_DCache(); #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY /*if instruction or rodata in flash will be load to spiram, some subsequent operations require the start address to be aligned by page, so allocate N pages address space for spiram's bss*/ Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, DPORT_CACHE_ADDRESS_LOW, 0, 64, EXT_BSS_PAGE_ALIGN_SIZE >> 16, 0); REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DPORT); next_map_page_num += (EXT_BSS_PAGE_ALIGN_SIZE >> 16); spiram_map_size -= EXT_BSS_PAGE_ALIGN_SIZE; #endif /* map the address from SPIRAM end to the start, map the address in order: DRAM0, DRAM1, DPORT */ if (spiram_map_size <= DRAM0_ONLY_CACHE_SIZE) { /* psram need to be mapped vaddr size <= 3MB + 512 KB, only map DRAM0 bus */ Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_MAP_VADDR_START, SPIRAM_MAP_PADDR_START, 64, SPIRAM_MAP_SIZE >> 16, 0); REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0); } else if (spiram_map_size <= DRAM0_DRAM1_CACHE_SIZE) { /* psram need to be mapped vaddr size <= 7MB + 512KB, only map DRAM0 and DRAM1 bus */ Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_MAP_VADDR_START, SPIRAM_MAP_PADDR_START, 64, SPIRAM_MAP_SIZE >> 16, 0); REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0); } else if (spiram_size <= DRAM0_DRAM1_DPORT_CACHE_SIZE) { // Equivalent to {spiram_map_size < DRAM0_DRAM1_DPORT_CACHE_SIZE - (spiram_size - spiram_map_size)/*bss size*/} /* psram need to be mapped vaddr size <= 10MB + 512KB - bss_page_align_size, map DRAM0, DRAM1, DPORT bus */ Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_MAP_VADDR_START, SPIRAM_MAP_PADDR_START, 64, SPIRAM_MAP_SIZE >> 16, 0); REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0 | EXTMEM_PRO_DCACHE_MASK_DPORT); } else { /* psram need to be mapped vaddr size > 10MB + 512KB - bss_page_align_size, map DRAM0, DRAM1, DPORT bus ,discard the memory in the end of spiram */ Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, FREE_DRAM0_DRAM1_DPORT_CACHE_START, SPIRAM_MAP_PADDR_START, 64, FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE >> 16, 0); REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0 | EXTMEM_PRO_DCACHE_MASK_DPORT); } Cache_Resume_DCache(0); } uint32_t esp_spiram_instruction_access_enabled(void) { return instruction_in_spiram; } uint32_t esp_spiram_rodata_access_enabled(void) { return rodata_in_spiram; } #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS esp_err_t esp_spiram_enable_instruction_access(void) { uint32_t pages_in_flash = 0; pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped); pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped); if ((pages_in_flash + next_map_page_num) > (spiram_size >> 16)) { ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + next_map_page_num)); return ESP_FAIL; } ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM"); uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE; uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t)); mmu_value &= MMU_ADDRESS_MASK; instr_flash2spiram_offs = mmu_value - next_map_page_num; ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, next_map_page_num, instr_flash2spiram_offs); next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, next_map_page_num, &page0_page); next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, next_map_page_num, &page0_page); instruction_in_spiram = 1; return ESP_OK; } #endif #if CONFIG_SPIRAM_RODATA esp_err_t esp_spiram_enable_rodata_access(void) { uint32_t pages_in_flash = 0; pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped); pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped); pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped); pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped); if ((pages_in_flash + next_map_page_num) > (spiram_size >> 16)) { ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data."); return ESP_FAIL; } ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM"); uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE; uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t)); mmu_value &= MMU_ADDRESS_MASK; rodata_flash2spiram_offs = mmu_value - next_map_page_num; ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, next_map_page_num, rodata_flash2spiram_offs); next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, DROM0_ADDRESS_LOW, next_map_page_num, &page0_page); next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, next_map_page_num, &page0_page); next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, next_map_page_num, &page0_page); next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, next_map_page_num, &page0_page); rodata_in_spiram = 1; return ESP_OK; } #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS void instruction_flash_page_info_init(void) { uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE; uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE; instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t)); instr_start_page &= MMU_ADDRESS_MASK; instr_end_page = instr_start_page + instr_page_cnt - 1; } uint32_t IRAM_ATTR instruction_flash_start_page_get(void) { return instr_start_page; } uint32_t IRAM_ATTR instruction_flash_end_page_get(void) { return instr_end_page; } int IRAM_ATTR instruction_flash2spiram_offset(void) { return instr_flash2spiram_offs; } #endif #if CONFIG_SPIRAM_RODATA void rodata_flash_page_info_init(void) { uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - SOC_DROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE; uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE; rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t)); rodata_start_page &= MMU_ADDRESS_MASK; rodata_end_page = rodata_start_page + rodata_page_cnt - 1; } uint32_t IRAM_ATTR rodata_flash_start_page_get(void) { return rodata_start_page; } uint32_t IRAM_ATTR rodata_flash_end_page_get(void) { return rodata_end_page; } int IRAM_ATTR rodata_flash2spiram_offset(void) { return rodata_flash2spiram_offs; } #endif esp_err_t esp_spiram_init(void) { esp_err_t r; r = psram_enable(PSRAM_SPEED, PSRAM_MODE); if (r != ESP_OK) { #if CONFIG_SPIRAM_IGNORE_NOTFOUND ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out."); #endif return r; } spiram_inited = true; spiram_size = esp_spiram_get_size(); #if (CONFIG_SPIRAM_SIZE != -1) if (spiram_size != CONFIG_SPIRAM_SIZE) { ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE/1024, spiram_size/1024); return ESP_ERR_INVALID_SIZE; } #endif ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device", (spiram_size*8)/(1024*1024)); ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \ PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m"); ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \ (PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \ (PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \ (PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR"); return ESP_OK; } esp_err_t esp_spiram_add_to_heapalloc(void) { size_t recycle_pages_size = 0; size_t map_size = 0; intptr_t map_vaddr, map_paddr; ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (next_map_page_num << 16))/1024); #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY if(EXT_BSS_SIZE){ ESP_EARLY_LOGI(TAG, "Adding pool of %d Byte(spiram .bss page unused area) of external SPI memory to heap allocator", EXT_BSS_PAGE_ALIGN_SIZE - EXT_BSS_SIZE); esp_err_t err_status = heap_caps_add_region(DPORT_CACHE_ADDRESS_LOW + EXT_BSS_SIZE, FREE_DRAM0_DRAM1_DPORT_CACHE_START - 1); if (err_status != ESP_OK){ return err_status; } } #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA /* Part of the physical address space in spiram is mapped by IRAM0/DROM0, so the DPORT_DRAM0_DRAM1 address space of the same size can be released */ uint32_t occupied_pages_size = (next_map_page_num << 16); recycle_pages_size = occupied_pages_size - SPIRAM_MAP_PADDR_START; #endif // Small size: means DPORT_DRAM0_DRAM1 bus virtrual address space larger than the spiram size if (spiram_size <= DRAM0_DRAM1_DPORT_CACHE_SIZE) { map_vaddr = SPIRAM_MAP_VADDR_START; return heap_caps_add_region(map_vaddr + recycle_pages_size, map_vaddr + spiram_map_size - 1); // pass rodata & instruction section } // Middle size: means DPORT_DRAM0_DRAM1 bus virtrual address space less than the // spiram size, but after releasing the virtual address space mapped // from the rodata or instruction copied from the flash, the released // virtual address space is enough to map the abandoned physical address // space in spiram if (recycle_pages_size >= SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT) { map_vaddr = SPIRAM_MAP_VADDR_START + recycle_pages_size; map_paddr = SPIRAM_MAP_PADDR_START + recycle_pages_size; map_size = SPIRAM_MAP_SIZE - recycle_pages_size; Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, map_vaddr, map_paddr, 64, map_size >> 16, 0); return heap_caps_add_region(map_vaddr , map_vaddr + map_size - 1); } // Large size: means after releasing the virtual address space mapped from the rodata // or instruction copied from the flash, the released virtual address space // still not enough to map the abandoned physical address space in spiram, // so use all the virtual address space as much as possible map_vaddr = FREE_DRAM0_DRAM1_DPORT_CACHE_START; map_paddr = SPIRAM_MAP_PADDR_START + recycle_pages_size; map_size = FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE; Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, map_vaddr, map_paddr, 64, map_size >> 16, 0); return heap_caps_add_region(map_vaddr, map_vaddr + FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE -1); } static uint8_t *dma_heap; esp_err_t esp_spiram_reserve_dma_pool(size_t size) { if (size==0) return ESP_OK; //no-op ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024); dma_heap=heap_caps_malloc(size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); if (!dma_heap) return ESP_ERR_NO_MEM; uint32_t caps[]={MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}; return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1); } size_t esp_spiram_get_size(void) { if (!spiram_inited) { ESP_EARLY_LOGE(TAG, "SPI RAM not initialized"); abort(); } psram_size_t size=psram_get_size(); if (size==PSRAM_SIZE_16MBITS) return 2*1024*1024; if (size==PSRAM_SIZE_32MBITS) return 4*1024*1024; if (size==PSRAM_SIZE_64MBITS) return 8*1024*1024; return CONFIG_SPIRAM_SIZE; } /* Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first, otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this. */ void IRAM_ATTR esp_spiram_writeback_cache(void) { extern void Cache_WriteBack_All(void); Cache_WriteBack_All(); } /* Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been initialized (in a two-core system) or after the heap allocator has taken ownership of the memory. */ bool esp_spiram_test(void) { volatile int *spiram = (volatile int*)(SOC_EXTRAM_DATA_HIGH - spiram_map_size); size_t p; size_t s = spiram_map_size; int errct=0; int initial_err=-1; if (SOC_EXTRAM_DATA_SIZE < spiram_map_size) { ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH); spiram=(volatile int*)SOC_EXTRAM_DATA_LOW; s = SOC_EXTRAM_DATA_SIZE; } for (p=0; p<(s/sizeof(int)); p+=8) { spiram[p]=p^0xAAAAAAAA; } for (p=0; p<(s/sizeof(int)); p+=8) { if (spiram[p]!=(p^0xAAAAAAAA)) { errct++; if (errct==1) initial_err=p*4; if (errct < 4) { ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p^0xAAAAAAAA); } } } if (errct) { ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err+SOC_EXTRAM_DATA_LOW); return false; } else { ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK"); return true; } } #endif