/* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/task.h" #include "esp_log.h" #include "esp_err.h" #include "esp_check.h" #include "esp_rom_gpio.h" #include "esp_intr_alloc.h" #include "soc/gpio_periph.h" #include "soc/mcpwm_periph.h" #include "hal/mcpwm_hal.h" #include "hal/gpio_hal.h" #include "hal/mcpwm_ll.h" #include "driver/mcpwm_types_legacy.h" #include "driver/gpio.h" #include "esp_private/periph_ctrl.h" static const char *TAG = "mcpwm(legacy)"; _Static_assert(MCPWM_UNIT_MAX == SOC_MCPWM_GROUPS, "MCPWM unit number not equal to chip capabilities"); #define MCPWM_DRIVER_INIT_ERROR "MCPWM DRIVER NOT INITIALIZED" #define MCPWM_GROUP_NUM_ERROR "MCPWM GROUP NUM ERROR" #define MCPWM_PRESCALE_ERROR "MCPWM PRESCALE ERROR" #define MCPWM_TIMER_ERROR "MCPWM TIMER NUM ERROR" #define MCPWM_CAPTURE_ERROR "MCPWM CAPTURE NUM ERROR" #define MCPWM_PARAM_ADDR_ERROR "MCPWM PARAM ADDR ERROR" #define MCPWM_DUTY_TYPE_ERROR "MCPWM DUTY TYPE ERROR" #define MCPWM_GPIO_ERROR "MCPWM GPIO NUM ERROR" #define MCPWM_GEN_ERROR "MCPWM GENERATOR ERROR" #define MCPWM_DT_ERROR "MCPWM DEADTIME TYPE ERROR" #define MCPWM_CAP_EXIST_ERROR "MCPWM USER CAP INT SERVICE ALREADY EXISTS" #ifdef CONFIG_MCPWM_ISR_IRAM_SAFE #define MCPWM_ISR_ATTR IRAM_ATTR #define MCPWM_INTR_FLAG ESP_INTR_FLAG_IRAM #else #define MCPWM_ISR_ATTR #define MCPWM_INTR_FLAG 0 #endif #define MCPWM_GROUP_CLK_SRC_HZ 160000000 #define MCPWM_GROUP_CLK_PRESCALE (16) #define MCPWM_GROUP_CLK_HZ (MCPWM_GROUP_CLK_SRC_HZ / MCPWM_GROUP_CLK_PRESCALE) #define MCPWM_TIMER_CLK_HZ (MCPWM_GROUP_CLK_HZ / 10) _Static_assert(SOC_MCPWM_OPERATORS_PER_GROUP >= SOC_MCPWM_TIMERS_PER_GROUP, "This driver assumes the timer num equals to the operator num."); _Static_assert(SOC_MCPWM_COMPARATORS_PER_OPERATOR >= SOC_MCPWM_GENERATORS_PER_OPERATOR, "This driver assumes the generator num equals to the generator num."); _Static_assert(SOC_MCPWM_GENERATORS_PER_OPERATOR == 2, "This driver assumes the generator num equals to 2."); #define MCPWM_TIMER_ID_CHECK(mcpwm_num, timer_num) \ do { \ ESP_RETURN_ON_FALSE((mcpwm_num) < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); \ ESP_RETURN_ON_FALSE((timer_num) < SOC_MCPWM_TIMERS_PER_GROUP, ESP_ERR_INVALID_ARG, TAG, MCPWM_TIMER_ERROR); \ } while (0) #define MCPWM_TIMER_CHECK(mcpwm_num, timer_num) \ do { \ MCPWM_TIMER_ID_CHECK(mcpwm_num, timer_num); \ ESP_RETURN_ON_FALSE(context[mcpwm_num].hal.dev, ESP_ERR_INVALID_STATE, TAG, MCPWM_DRIVER_INIT_ERROR); \ } while (0) #define MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen) \ do { \ MCPWM_TIMER_CHECK(mcpwm_num, timer_num); \ ESP_RETURN_ON_FALSE((gen) < MCPWM_GEN_MAX, ESP_ERR_INVALID_ARG, TAG, MCPWM_GEN_ERROR); \ } while (0) typedef struct { cap_isr_cb_t fn; // isr function void *args; // isr function args } cap_isr_func_t; typedef struct { mcpwm_hal_context_t hal; portMUX_TYPE spinlock; _lock_t mutex_lock; const int group_id; int group_pre_scale; // starts from 1, not 0. will be subtracted by 1 in ll driver int timer_pre_scale[SOC_MCPWM_TIMERS_PER_GROUP]; // same as above intr_handle_t mcpwm_intr_handle; // handler for ISR register, one per MCPWM group cap_isr_func_t cap_isr_func[SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER]; // handler for ISR callback, one for each cap ch } mcpwm_context_t; static mcpwm_context_t context[SOC_MCPWM_GROUPS] = { [0] = { .hal = {MCPWM_LL_GET_HW(0)}, .spinlock = portMUX_INITIALIZER_UNLOCKED, .group_id = 0, .group_pre_scale = MCPWM_GROUP_CLK_SRC_HZ / MCPWM_GROUP_CLK_HZ, .timer_pre_scale = { [0 ... SOC_MCPWM_TIMERS_PER_GROUP - 1] = MCPWM_GROUP_CLK_HZ / MCPWM_TIMER_CLK_HZ }, .mcpwm_intr_handle = NULL, .cap_isr_func = {[0 ... SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER - 1] = {NULL, NULL}}, }, #if SOC_MCPWM_GROUPS > 1 [1] = { .hal = {MCPWM_LL_GET_HW(1)}, .spinlock = portMUX_INITIALIZER_UNLOCKED, .group_id = 1, .group_pre_scale = MCPWM_GROUP_CLK_SRC_HZ / MCPWM_GROUP_CLK_HZ, .timer_pre_scale = { [0 ... SOC_MCPWM_TIMERS_PER_GROUP - 1] = MCPWM_GROUP_CLK_HZ / MCPWM_TIMER_CLK_HZ }, .mcpwm_intr_handle = NULL, .cap_isr_func = {[0 ... SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER - 1] = {NULL, NULL}}, } #endif }; typedef void (*mcpwm_ll_gen_set_event_action_t)(mcpwm_dev_t *mcpwm, int op, int gen, int action); static inline void mcpwm_critical_enter(mcpwm_unit_t mcpwm_num) { portENTER_CRITICAL(&context[mcpwm_num].spinlock); } static inline void mcpwm_critical_exit(mcpwm_unit_t mcpwm_num) { portEXIT_CRITICAL(&context[mcpwm_num].spinlock); } static inline void mcpwm_mutex_lock(mcpwm_unit_t mcpwm_num) { _lock_acquire(&context[mcpwm_num].mutex_lock); } static inline void mcpwm_mutex_unlock(mcpwm_unit_t mcpwm_num) { _lock_release(&context[mcpwm_num].mutex_lock); } esp_err_t mcpwm_gpio_init(mcpwm_unit_t mcpwm_num, mcpwm_io_signals_t io_signal, int gpio_num) { if (gpio_num < 0) { // ignore on minus gpio number return ESP_OK; } ESP_RETURN_ON_FALSE(mcpwm_num < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); ESP_RETURN_ON_FALSE(GPIO_IS_VALID_GPIO(gpio_num), ESP_ERR_INVALID_ARG, TAG, MCPWM_GPIO_ERROR); if (io_signal <= MCPWM2B) { // Generator output signal ESP_RETURN_ON_FALSE(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), ESP_ERR_INVALID_ARG, TAG, MCPWM_GPIO_ERROR); gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT); int operator_id = io_signal / 2; int generator_id = io_signal % 2; esp_rom_gpio_connect_out_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].operators[operator_id].generators[generator_id].pwm_sig, 0, 0); } else if (io_signal <= MCPWM_SYNC_2) { // External sync input signal gpio_set_direction(gpio_num, GPIO_MODE_INPUT); int gpio_sync_id = io_signal - MCPWM_SYNC_0; esp_rom_gpio_connect_in_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].gpio_synchros[gpio_sync_id].sync_sig, 0); } else if (io_signal <= MCPWM_FAULT_2) { // Fault input signal gpio_set_direction(gpio_num, GPIO_MODE_INPUT); int fault_id = io_signal - MCPWM_FAULT_0; esp_rom_gpio_connect_in_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].gpio_faults[fault_id].fault_sig, 0); } else if (io_signal >= MCPWM_CAP_0 && io_signal <= MCPWM_CAP_2) { // Capture input signal gpio_set_direction(gpio_num, GPIO_MODE_INPUT); int capture_id = io_signal - MCPWM_CAP_0; esp_rom_gpio_connect_in_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].captures[capture_id].cap_sig, 0); } gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO); return ESP_OK; } esp_err_t mcpwm_set_pin(mcpwm_unit_t mcpwm_num, const mcpwm_pin_config_t *mcpwm_pin) { ESP_RETURN_ON_FALSE(mcpwm_num < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); mcpwm_gpio_init(mcpwm_num, MCPWM0A, mcpwm_pin->mcpwm0a_out_num); //MCPWM0A mcpwm_gpio_init(mcpwm_num, MCPWM0B, mcpwm_pin->mcpwm0b_out_num); //MCPWM0B mcpwm_gpio_init(mcpwm_num, MCPWM1A, mcpwm_pin->mcpwm1a_out_num); //MCPWM1A mcpwm_gpio_init(mcpwm_num, MCPWM1B, mcpwm_pin->mcpwm1b_out_num); //MCPWM1B mcpwm_gpio_init(mcpwm_num, MCPWM2A, mcpwm_pin->mcpwm2a_out_num); //MCPWM2A mcpwm_gpio_init(mcpwm_num, MCPWM2B, mcpwm_pin->mcpwm2b_out_num); //MCPWM2B mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_0, mcpwm_pin->mcpwm_sync0_in_num); //SYNC0 mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_1, mcpwm_pin->mcpwm_sync1_in_num); //SYNC1 mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_2, mcpwm_pin->mcpwm_sync2_in_num); //SYNC2 mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_0, mcpwm_pin->mcpwm_fault0_in_num); //FAULT0 mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_1, mcpwm_pin->mcpwm_fault1_in_num); //FAULT1 mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_2, mcpwm_pin->mcpwm_fault2_in_num); //FAULT2 mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_0, mcpwm_pin->mcpwm_cap0_in_num); //CAP0 mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_1, mcpwm_pin->mcpwm_cap1_in_num); //CAP1 mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_2, mcpwm_pin->mcpwm_cap2_in_num); //CAP2 return ESP_OK; } esp_err_t mcpwm_start(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_set_start_stop_command(context[mcpwm_num].hal.dev, timer_num, MCPWM_TIMER_START_NO_STOP); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_stop(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_set_start_stop_command(context[mcpwm_num].hal.dev, timer_num, MCPWM_TIMER_STOP_EMPTY); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_group_set_resolution(mcpwm_unit_t mcpwm_num, unsigned long int resolution) { mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; int pre_scale_temp = MCPWM_GROUP_CLK_SRC_HZ / resolution; ESP_RETURN_ON_FALSE(pre_scale_temp >= 1, ESP_ERR_INVALID_ARG, TAG, "invalid resolution"); context[mcpwm_num].group_pre_scale = pre_scale_temp; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_group_set_clock_prescale(hal->dev, context[mcpwm_num].group_pre_scale); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_timer_set_resolution(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, unsigned long int resolution) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; int pre_scale_temp = MCPWM_GROUP_CLK_SRC_HZ / context[mcpwm_num].group_pre_scale / resolution; ESP_RETURN_ON_FALSE(pre_scale_temp >= 1, ESP_ERR_INVALID_ARG, TAG, "invalid resolution"); context[mcpwm_num].timer_pre_scale[timer_num] = pre_scale_temp; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_set_clock_prescale(hal->dev, timer_num, context[mcpwm_num].timer_pre_scale[timer_num]); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint32_t frequency) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_update_period_at_once(hal->dev, timer_num); uint32_t previous_peak = mcpwm_ll_timer_get_peak(hal->dev, timer_num, false); int real_group_prescale = mcpwm_ll_group_get_clock_prescale(hal->dev); unsigned long int real_timer_clk_hz = MCPWM_GROUP_CLK_SRC_HZ / real_group_prescale / mcpwm_ll_timer_get_clock_prescale(hal->dev, timer_num); uint32_t new_peak = real_timer_clk_hz / frequency; mcpwm_ll_timer_set_peak(hal->dev, timer_num, new_peak, false); // keep the duty cycle unchanged float scale = ((float)new_peak) / previous_peak; // the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output uint32_t previous_cmp_a = mcpwm_ll_operator_get_compare_value(hal->dev, op, 0); uint32_t previous_cmp_b = mcpwm_ll_operator_get_compare_value(hal->dev, op, 1); // update compare value immediately mcpwm_ll_operator_update_compare_at_once(hal->dev, op, 0); mcpwm_ll_operator_update_compare_at_once(hal->dev, op, 1); mcpwm_ll_operator_set_compare_value(hal->dev, op, 0, (uint32_t)(previous_cmp_a * scale)); mcpwm_ll_operator_set_compare_value(hal->dev, op, 1, (uint32_t)(previous_cmp_b * scale)); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, float duty) { //the driver currently always use the timer x for operator x const int op = timer_num; //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output const int cmp = gen; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); uint32_t set_duty = mcpwm_ll_timer_get_peak(hal->dev, timer_num, false) * duty / 100; mcpwm_ll_operator_set_compare_value(hal->dev, op, cmp, set_duty); mcpwm_ll_operator_enable_update_compare_on_tez(hal->dev, op, cmp, true); mcpwm_ll_operator_enable_update_compare_on_tep(hal->dev, op, cmp, true); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_duty_in_us(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, uint32_t duty_in_us) { //the driver currently always use the timer x for operator x const int op = timer_num; //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output const int cmp = gen; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); int real_group_prescale = mcpwm_ll_group_get_clock_prescale(hal->dev); // to avid multiplication overflow, use uint64_t here uint64_t real_timer_clk_hz = MCPWM_GROUP_CLK_SRC_HZ / real_group_prescale / mcpwm_ll_timer_get_clock_prescale(hal->dev, timer_num); uint64_t compare_val = real_timer_clk_hz * duty_in_us / 1000000; mcpwm_ll_operator_set_compare_value(hal->dev, op, cmp, (uint32_t)compare_val); mcpwm_ll_operator_enable_update_compare_on_tez(hal->dev, op, cmp, true); mcpwm_ll_operator_enable_update_compare_on_tep(hal->dev, op, cmp, true); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_duty_type(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, mcpwm_duty_type_t duty_type) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen); ESP_RETURN_ON_FALSE(duty_type < MCPWM_DUTY_MODE_MAX, ESP_ERR_INVALID_ARG, TAG, MCPWM_DUTY_TYPE_ERROR); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output mcpwm_critical_enter(mcpwm_num); switch (mcpwm_ll_timer_get_count_mode(hal->dev, timer_num)) { case MCPWM_TIMER_COUNT_MODE_UP: if (duty_type == MCPWM_DUTY_MODE_0) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_FULL, MCPWM_GEN_ACTION_KEEP); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_LOW); } else if (duty_type == MCPWM_DUTY_MODE_1) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_NO_CHANGE); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_HIGH); } else if (duty_type == MCPWM_DUTY_MODE_FORCE_LOW) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_LOW); } else if (duty_type == MCPWM_DUTY_MODE_FORCE_HIGH) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_HIGH); } break; case MCPWM_TIMER_COUNT_MODE_DOWN: if (duty_type == MCPWM_DUTY_MODE_0) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_NO_CHANGE); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_HIGH); } else if (duty_type == MCPWM_DUTY_MODE_1) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_NO_CHANGE); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_LOW); } else if (duty_type == MCPWM_DUTY_MODE_FORCE_LOW) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_LOW); } else if (duty_type == MCPWM_DUTY_MODE_FORCE_HIGH) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_HIGH); } break; case MCPWM_TIMER_COUNT_MODE_UP_DOWN: if (duty_type == MCPWM_DUTY_MODE_0) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_HIGH); } else if (duty_type == MCPWM_DUTY_MODE_1) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_LOW); } else if (duty_type == MCPWM_DUTY_MODE_FORCE_LOW) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_LOW); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_LOW); } else if (duty_type == MCPWM_DUTY_MODE_FORCE_HIGH) { mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_timer_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_FULL, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_DOWN, gen, MCPWM_ACTION_FORCE_HIGH); mcpwm_ll_generator_set_action_on_compare_event(hal->dev, op, gen, MCPWM_TIMER_DIRECTION_UP, gen, MCPWM_ACTION_FORCE_HIGH); } break; default: break; } mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_config_t *mcpwm_conf) { const int op = timer_num; MCPWM_TIMER_ID_CHECK(mcpwm_num, op); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; periph_module_enable(mcpwm_periph_signals.groups[mcpwm_num].module); mcpwm_hal_init_config_t config = { .group_id = mcpwm_num }; mcpwm_hal_init(hal, &config); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_group_set_clock_prescale(hal->dev, context[mcpwm_num].group_pre_scale); mcpwm_ll_timer_set_clock_prescale(hal->dev, timer_num, context[mcpwm_num].timer_pre_scale[timer_num]); mcpwm_ll_timer_set_count_mode(hal->dev, timer_num, mcpwm_conf->counter_mode); mcpwm_ll_timer_update_period_at_once(hal->dev, timer_num); int real_group_prescale = mcpwm_ll_group_get_clock_prescale(hal->dev); unsigned long int real_timer_clk_hz = MCPWM_GROUP_CLK_SRC_HZ / real_group_prescale / mcpwm_ll_timer_get_clock_prescale(hal->dev, timer_num); mcpwm_ll_timer_set_peak(hal->dev, timer_num, real_timer_clk_hz / mcpwm_conf->frequency, false); mcpwm_ll_operator_connect_timer(hal->dev, timer_num, timer_num); //the driver currently always use the timer x for operator x mcpwm_critical_exit(mcpwm_num); mcpwm_set_duty(mcpwm_num, timer_num, 0, mcpwm_conf->cmpr_a); mcpwm_set_duty(mcpwm_num, timer_num, 1, mcpwm_conf->cmpr_b); mcpwm_set_duty_type(mcpwm_num, timer_num, 0, mcpwm_conf->duty_mode); mcpwm_set_duty_type(mcpwm_num, timer_num, 1, mcpwm_conf->duty_mode); mcpwm_start(mcpwm_num, timer_num); return ESP_OK; } uint32_t mcpwm_get_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { if (mcpwm_num >= MCPWM_UNIT_MAX || timer_num >= MCPWM_TIMER_MAX) { ESP_LOGE(TAG, "Invalid MCPWM timer instance"); return 0; } mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); int real_group_prescale = mcpwm_ll_group_get_clock_prescale(hal->dev); unsigned long int real_timer_clk_hz = MCPWM_GROUP_CLK_SRC_HZ / real_group_prescale / mcpwm_ll_timer_get_clock_prescale(hal->dev, timer_num); uint32_t peak = mcpwm_ll_timer_get_peak(hal->dev, timer_num, false); uint32_t freq = real_timer_clk_hz / peak; mcpwm_critical_exit(mcpwm_num); return freq; } float mcpwm_get_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen) { if (mcpwm_num >= MCPWM_UNIT_MAX || timer_num >= MCPWM_TIMER_MAX || gen >= MCPWM_GEN_MAX) { ESP_LOGE(TAG, "Invalid MCPWM generator instance"); return 0; } //the driver currently always use the timer x for operator x const int op = timer_num; mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); float duty = 100.0 * mcpwm_ll_operator_get_compare_value(hal->dev, op, gen) / mcpwm_ll_timer_get_peak(hal->dev, timer_num, false); mcpwm_critical_exit(mcpwm_num); return duty; } uint32_t mcpwm_get_duty_in_us(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_operator_t gen) { if (mcpwm_num >= MCPWM_UNIT_MAX || timer_num >= MCPWM_TIMER_MAX || gen >= MCPWM_GEN_MAX) { ESP_LOGE(TAG, "Invalid MCPWM generator instance"); return 0; } //the driver currently always use the timer x for operator x const int op = timer_num; mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); int real_group_prescale = mcpwm_ll_group_get_clock_prescale(hal->dev); unsigned long int real_timer_clk_hz = MCPWM_GROUP_CLK_SRC_HZ / real_group_prescale / mcpwm_ll_timer_get_clock_prescale(hal->dev, timer_num); uint32_t duty = mcpwm_ll_operator_get_compare_value(hal->dev, op, gen) * (1000000.0 / real_timer_clk_hz); mcpwm_critical_exit(mcpwm_num); return duty; } esp_err_t mcpwm_set_signal_high(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen) { //the driver currently always use the timer x for operator x return mcpwm_set_duty_type(mcpwm_num, timer_num, gen, MCPWM_DUTY_MODE_FORCE_HIGH); } esp_err_t mcpwm_set_signal_low(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen) { //the driver currently always use the timer x for operator x return mcpwm_set_duty_type(mcpwm_num, timer_num, gen, MCPWM_DUTY_MODE_FORCE_LOW); } esp_err_t mcpwm_carrier_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_enable(context[mcpwm_num].hal.dev, op, true); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_enable(context[mcpwm_num].hal.dev, op, false); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_set_period(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_period) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_set_prescale(context[mcpwm_num].hal.dev, op, carrier_period + 1); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_set_duty_cycle(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_duty) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_set_duty(context[mcpwm_num].hal.dev, op, carrier_duty); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_oneshot_mode_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t pulse_width) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_set_first_pulse_width(context[mcpwm_num].hal.dev, op, pulse_width + 1); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_output_invert(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_carrier_out_ivt_t carrier_ivt_mode) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_out_invert(context[mcpwm_num].hal.dev, op, carrier_ivt_mode); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_carrier_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_carrier_config_t *carrier_conf) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_carrier_enable(mcpwm_num, timer_num); mcpwm_carrier_set_period(mcpwm_num, timer_num, carrier_conf->carrier_period); mcpwm_carrier_set_duty_cycle(mcpwm_num, timer_num, carrier_conf->carrier_duty); mcpwm_carrier_oneshot_mode_enable(mcpwm_num, timer_num, carrier_conf->pulse_width_in_os); mcpwm_carrier_output_invert(mcpwm_num, timer_num, carrier_conf->carrier_ivt_mode); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_carrier_in_invert(hal->dev, op, false); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_deadtime_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_deadtime_type_t dt_mode, uint32_t red, uint32_t fed) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); ESP_RETURN_ON_FALSE(dt_mode < MCPWM_DEADTIME_TYPE_MAX, ESP_ERR_INVALID_ARG, TAG, MCPWM_DT_ERROR); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_deadtime_enable_update_delay_on_tez(hal->dev, op, true); // The dead time delay unit equals to MCPWM group resolution mcpwm_ll_operator_set_deadtime_clock_src(hal->dev, op, MCPWM_LL_DEADTIME_CLK_SRC_GROUP); mcpwm_ll_deadtime_set_rising_delay(hal->dev, op, red + 1); mcpwm_ll_deadtime_set_falling_delay(hal->dev, op, fed + 1); switch (dt_mode) { case MCPWM_BYPASS_RED: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, true); // S1=1 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, false); // S2=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3=0 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5=0 break; case MCPWM_BYPASS_FED: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, true); // S0=1 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, false); // S1=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, false); // S2=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3=0 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5=0 break; case MCPWM_ACTIVE_HIGH_MODE: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, false); // S1=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, false); // S2=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3=0 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5=0 break; case MCPWM_ACTIVE_LOW_MODE: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, false); // S1=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, true); // S2=1 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, true); // S3=1 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5=0 break; case MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, false); // S1=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, false); // S2=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, true); // S3=1 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5=0 break; case MCPWM_ACTIVE_LOW_COMPLIMENT_MODE: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, false); // S1=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, true); // S2=1 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3=0 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5=0 break; case MCPWM_ACTIVE_RED_FED_FROM_PWMXA: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3=0 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4=0 mcpwm_ll_deadtime_swap_out_path(hal->dev, op, 0, true); // S6=1 mcpwm_ll_deadtime_swap_out_path(hal->dev, op, 1, false); // S7=0 mcpwm_ll_deadtime_enable_deb(hal->dev, op, true); // S8=1 break; case MCPWM_ACTIVE_RED_FED_FROM_PWMXB: mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, false); // S0=0 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3=0 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 1); // S4=1 mcpwm_ll_deadtime_swap_out_path(hal->dev, op, 0, true); // S6=1 mcpwm_ll_deadtime_swap_out_path(hal->dev, op, 1, false); // S7=0 mcpwm_ll_deadtime_enable_deb(hal->dev, op, true); // S8=1 break; default : break; } mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_deadtime_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_deadtime_bypass_path(hal->dev, op, 1, true); // S0 mcpwm_ll_deadtime_bypass_path(hal->dev, op, 0, true); // S1 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 0, false); // S2 mcpwm_ll_deadtime_invert_outpath(hal->dev, op, 1, false); // S3 mcpwm_ll_deadtime_red_select_generator(hal->dev, op, 0); // S4 mcpwm_ll_deadtime_fed_select_generator(hal->dev, op, 0); // S5 mcpwm_ll_deadtime_swap_out_path(hal->dev, op, 0, false); // S6 mcpwm_ll_deadtime_swap_out_path(hal->dev, op, 1, false); // S7 mcpwm_ll_deadtime_enable_deb(hal->dev, op, false); // S8 mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_init(mcpwm_unit_t mcpwm_num, mcpwm_fault_input_level_t intput_level, mcpwm_fault_signal_t fault_sig) { ESP_RETURN_ON_FALSE(mcpwm_num < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_fault_enable_detection(hal->dev, fault_sig, true); mcpwm_ll_fault_set_active_level(hal->dev, fault_sig, intput_level); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_deinit(mcpwm_unit_t mcpwm_num, mcpwm_fault_signal_t fault_sig) { ESP_RETURN_ON_FALSE(mcpwm_num < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_fault_enable_detection(hal->dev, fault_sig, false); for (int i = 0; i < SOC_MCPWM_OPERATORS_PER_GROUP; i++) { mcpwm_ll_brake_clear_ost(hal->dev, i); // make sure operator has exit the ost fault state totally } mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_set_cyc_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig, mcpwm_output_action_t action_on_pwmxa, mcpwm_output_action_t action_on_pwmxb) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, op); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_brake_enable_cbc_mode(hal->dev, op, fault_sig, true); mcpwm_ll_brake_enable_cbc_refresh_on_tez(hal->dev, op, true); mcpwm_ll_brake_enable_oneshot_mode(hal->dev, op, fault_sig, false); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 0, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_OPER_BRAKE_MODE_CBC, action_on_pwmxa); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 0, MCPWM_TIMER_DIRECTION_UP, MCPWM_OPER_BRAKE_MODE_CBC, action_on_pwmxa); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 1, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_OPER_BRAKE_MODE_CBC, action_on_pwmxb); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 1, MCPWM_TIMER_DIRECTION_UP, MCPWM_OPER_BRAKE_MODE_CBC, action_on_pwmxb); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_fault_set_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig, mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb) { //the driver currently always use the timer x for operator x const int op = timer_num; MCPWM_TIMER_CHECK(mcpwm_num, op); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_brake_clear_ost(hal->dev, op); mcpwm_ll_brake_enable_oneshot_mode(hal->dev, op, fault_sig, true); mcpwm_ll_brake_enable_cbc_mode(hal->dev, op, fault_sig, false); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 0, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_OPER_BRAKE_MODE_OST, action_on_pwmxa); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 0, MCPWM_TIMER_DIRECTION_UP, MCPWM_OPER_BRAKE_MODE_OST, action_on_pwmxa); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 1, MCPWM_TIMER_DIRECTION_DOWN, MCPWM_OPER_BRAKE_MODE_OST, action_on_pwmxb); mcpwm_ll_generator_set_action_on_brake_event(hal->dev, op, 1, MCPWM_TIMER_DIRECTION_UP, MCPWM_OPER_BRAKE_MODE_OST, action_on_pwmxb); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } static void MCPWM_ISR_ATTR mcpwm_default_isr_handler(void *arg) { mcpwm_context_t *curr_context = (mcpwm_context_t *) arg; uint32_t intr_status = mcpwm_ll_intr_get_capture_status(curr_context->hal.dev); mcpwm_ll_intr_clear_capture_status(curr_context->hal.dev, intr_status); bool need_yield = false; for (int i = 0; i < SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER; ++i) { if ((intr_status >> i) & 0x1) { if (curr_context->cap_isr_func[i].fn != NULL) { cap_event_data_t edata; edata.cap_edge = mcpwm_ll_capture_get_edge(curr_context->hal.dev, i) == MCPWM_CAP_EDGE_NEG ? MCPWM_NEG_EDGE : MCPWM_POS_EDGE; edata.cap_value = mcpwm_ll_capture_get_value(curr_context->hal.dev, i); if (curr_context->cap_isr_func[i].fn(curr_context->group_id, i, &edata, curr_context->cap_isr_func[i].args)) { need_yield = true; } } } } if (need_yield) { portYIELD_FROM_ISR(); } } esp_err_t mcpwm_capture_enable_channel(mcpwm_unit_t mcpwm_num, mcpwm_capture_channel_id_t cap_channel, const mcpwm_capture_config_t *cap_conf) { ESP_RETURN_ON_FALSE(mcpwm_num < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); ESP_RETURN_ON_FALSE(cap_channel < SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER, ESP_ERR_INVALID_ARG, TAG, MCPWM_CAPTURE_ERROR); ESP_RETURN_ON_FALSE(context[mcpwm_num].cap_isr_func[cap_channel].fn == NULL, ESP_ERR_INVALID_STATE, TAG, MCPWM_CAP_EXIST_ERROR); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; // enable MCPWM module incase user don't use `mcpwm_init` at all. always increase reference count periph_module_enable(mcpwm_periph_signals.groups[mcpwm_num].module); mcpwm_hal_init_config_t init_config = { .group_id = mcpwm_num }; mcpwm_hal_init(hal, &init_config); mcpwm_critical_enter(mcpwm_num); mcpwm_ll_group_set_clock_prescale(hal->dev, context[mcpwm_num].group_pre_scale); mcpwm_ll_capture_enable_timer(hal->dev, true); mcpwm_ll_capture_enable_channel(hal->dev, cap_channel, true); mcpwm_ll_capture_enable_negedge(hal->dev, cap_channel, cap_conf->cap_edge & MCPWM_NEG_EDGE); mcpwm_ll_capture_enable_posedge(hal->dev, cap_channel, cap_conf->cap_edge & MCPWM_POS_EDGE); mcpwm_ll_capture_set_prescale(hal->dev, cap_channel, cap_conf->cap_prescale); // capture feature should be used with interrupt, so enable it by default mcpwm_ll_intr_enable(hal->dev, MCPWM_LL_EVENT_CAPTURE(cap_channel), true); mcpwm_ll_intr_clear_capture_status(hal->dev, 1 << cap_channel); mcpwm_critical_exit(mcpwm_num); mcpwm_mutex_lock(mcpwm_num); context[mcpwm_num].cap_isr_func[cap_channel].fn = cap_conf->capture_cb; context[mcpwm_num].cap_isr_func[cap_channel].args = cap_conf->user_data; esp_err_t ret = ESP_OK; if (context[mcpwm_num].mcpwm_intr_handle == NULL) { ret = esp_intr_alloc(mcpwm_periph_signals.groups[mcpwm_num].irq_id, MCPWM_INTR_FLAG, mcpwm_default_isr_handler, (void *) (context + mcpwm_num), &(context[mcpwm_num].mcpwm_intr_handle)); } mcpwm_mutex_unlock(mcpwm_num); return ret; } esp_err_t mcpwm_capture_disable_channel(mcpwm_unit_t mcpwm_num, mcpwm_capture_channel_id_t cap_channel) { ESP_RETURN_ON_FALSE(mcpwm_num < SOC_MCPWM_GROUPS, ESP_ERR_INVALID_ARG, TAG, MCPWM_GROUP_NUM_ERROR); ESP_RETURN_ON_FALSE(cap_channel < SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER, ESP_ERR_INVALID_ARG, TAG, MCPWM_CAPTURE_ERROR); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_capture_enable_channel(hal->dev, cap_channel, false); mcpwm_ll_intr_enable(hal->dev, MCPWM_LL_EVENT_CAPTURE(cap_channel), false); mcpwm_critical_exit(mcpwm_num); mcpwm_mutex_lock(mcpwm_num); context[mcpwm_num].cap_isr_func[cap_channel].fn = NULL; context[mcpwm_num].cap_isr_func[cap_channel].args = NULL; // if all user defined ISR callback is disabled, free the handle bool should_free_handle = true; for (int i = 0; i < SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER; ++i) { if (context[mcpwm_num].cap_isr_func[i].fn != NULL) { should_free_handle = false; break; } } esp_err_t ret = ESP_OK; if (should_free_handle) { ret = esp_intr_free(context[mcpwm_num].mcpwm_intr_handle); if (ret != ESP_OK) { ESP_LOGE(TAG, "failed to free interrupt handle"); } context[mcpwm_num].mcpwm_intr_handle = NULL; } mcpwm_mutex_unlock(mcpwm_num); // always decrease reference count periph_module_disable(mcpwm_periph_signals.groups[mcpwm_num].module); return ret; } uint32_t MCPWM_ISR_ATTR mcpwm_capture_signal_get_value(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig) { if (mcpwm_num >= MCPWM_UNIT_MAX || cap_sig >= SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER) { return 0; } mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; return mcpwm_ll_capture_get_value(hal->dev, cap_sig); } uint32_t MCPWM_ISR_ATTR mcpwm_capture_signal_get_edge(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig) { if (mcpwm_num >= MCPWM_UNIT_MAX || cap_sig >= SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER) { return 0; } mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; return mcpwm_ll_capture_get_edge(hal->dev, cap_sig) == MCPWM_CAP_EDGE_NEG ? 2 : 1; } esp_err_t mcpwm_sync_configure(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_sync_config_t *sync_conf) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); ESP_RETURN_ON_FALSE(sync_conf->sync_sig <= MCPWM_SELECT_GPIO_SYNC2, ESP_ERR_INVALID_ARG, TAG, "invalid sync_sig"); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_set_sync_phase_direction(hal->dev, timer_num, sync_conf->count_direction); // sync TEP with current setting uint32_t set_phase = 0; set_phase = mcpwm_ll_timer_get_peak(hal->dev, timer_num, false) * sync_conf->timer_val / 1000; mcpwm_ll_timer_set_sync_phase_value(hal->dev, timer_num, set_phase); if (sync_conf->sync_sig == MCPWM_SELECT_NO_INPUT) { mcpwm_ll_timer_clear_sync_input(hal->dev, timer_num); } else if (sync_conf->sync_sig <= MCPWM_SELECT_TIMER2_SYNC) { mcpwm_ll_timer_set_timer_sync_input(hal->dev, timer_num, sync_conf->sync_sig - MCPWM_SELECT_TIMER0_SYNC); } else { mcpwm_ll_timer_set_gpio_sync_input(hal->dev, timer_num, sync_conf->sync_sig - MCPWM_SELECT_GPIO_SYNC0); } mcpwm_ll_timer_enable_sync_input(hal->dev, timer_num, true); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_sync_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_enable_sync_input(hal->dev, timer_num, false); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_timer_trigger_soft_sync(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_timer_trigger_soft_sync(hal->dev, timer_num); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_sync_invert_gpio_synchro(mcpwm_unit_t mcpwm_num, mcpwm_sync_signal_t sync_sig, bool invert) { ESP_RETURN_ON_FALSE(sync_sig >= MCPWM_SELECT_GPIO_SYNC0 && sync_sig <= MCPWM_SELECT_GPIO_SYNC2, ESP_ERR_INVALID_ARG, TAG, "invalid sync sig"); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); mcpwm_ll_invert_gpio_sync_input(hal->dev, sync_sig - MCPWM_SELECT_GPIO_SYNC0, invert); mcpwm_critical_exit(mcpwm_num); return ESP_OK; } esp_err_t mcpwm_set_timer_sync_output(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_timer_sync_trigger_t trigger) { MCPWM_TIMER_CHECK(mcpwm_num, timer_num); mcpwm_hal_context_t *hal = &context[mcpwm_num].hal; mcpwm_critical_enter(mcpwm_num); switch (trigger) { case MCPWM_SWSYNC_SOURCE_SYNCIN: mcpwm_ll_timer_propagate_input_sync(hal->dev, timer_num); break; case MCPWM_SWSYNC_SOURCE_TEZ: mcpwm_ll_timer_sync_out_on_timer_event(hal->dev, timer_num, MCPWM_TIMER_EVENT_EMPTY); break; case MCPWM_SWSYNC_SOURCE_TEP: mcpwm_ll_timer_sync_out_on_timer_event(hal->dev, timer_num, MCPWM_TIMER_EVENT_FULL); break; case MCPWM_SWSYNC_SOURCE_DISABLED: default: mcpwm_ll_timer_disable_sync_out(hal->dev, timer_num); break; } mcpwm_critical_exit(mcpwm_num); return ESP_OK; } /** * @brief This function will be called during start up, to check that this legacy mcpwm driver is not running along with the new MCPWM driver */ __attribute__((constructor)) static void check_mcpwm_driver_conflict(void) { // This function was declared as weak here. The new MCPWM driver has the implementation. // So if the new MCPWM driver is not linked in, then `mcpwm_acquire_group_handle()` should be NULL at runtime. extern __attribute__((weak)) void *mcpwm_acquire_group_handle(int group_id); if ((void *)mcpwm_acquire_group_handle != NULL) { ESP_EARLY_LOGE(TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver"); abort(); } ESP_EARLY_LOGW(TAG, "legacy driver is deprecated, please migrate to `driver/mcpwm_prelude.h`"); }