// RMT driver unit test is based on extended NEC protocol #include #include #include "sdkconfig.h" #include "hal/cpu_hal.h" #include "hal/gpio_hal.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_log.h" #include "driver/rmt.h" #include "ir_tools.h" #include "unity.h" #include "test_utils.h" #include "esp_rom_gpio.h" #define RMT_RX_CHANNEL_ENCODING_START (SOC_RMT_CHANNELS_PER_GROUP-SOC_RMT_TX_CANDIDATES_PER_GROUP) #define RMT_TX_CHANNEL_ENCODING_END (SOC_RMT_TX_CANDIDATES_PER_GROUP-1) // CI ONLY: Don't connect any other signals to this GPIO #define RMT_DATA_IO (4) // bind signal RMT_SIG_OUT0_IDX and RMT_SIG_IN0_IDX on the same GPIO #define RMT_TESTBENCH_FLAGS_ALWAYS_ON (1<<0) #define RMT_TESTBENCH_FLAGS_CARRIER_ON (1<<1) #define RMT_TESTBENCH_FLAGS_LOOP_ON (1<<2) static const char *TAG = "RMT.test"; static ir_builder_t *s_ir_builder = NULL; static ir_parser_t *s_ir_parser = NULL; static void rmt_setup_testbench(int tx_channel, int rx_channel, uint32_t flags) { // RMT channel configuration if (tx_channel >= 0) { rmt_config_t tx_config = RMT_DEFAULT_CONFIG_TX(RMT_DATA_IO, tx_channel); if (flags & RMT_TESTBENCH_FLAGS_ALWAYS_ON) { tx_config.flags |= RMT_CHANNEL_FLAGS_AWARE_DFS; } if (flags & RMT_TESTBENCH_FLAGS_CARRIER_ON) { tx_config.tx_config.carrier_en = true; } #if SOC_RMT_SUPPORT_TX_LOOP_COUNT if (flags & RMT_TESTBENCH_FLAGS_LOOP_ON) { tx_config.tx_config.loop_en = true; tx_config.tx_config.loop_count = 10; } #endif TEST_ESP_OK(rmt_config(&tx_config)); } if (rx_channel >= 0) { rmt_config_t rx_config = RMT_DEFAULT_CONFIG_RX(RMT_DATA_IO, rx_channel); if (flags & RMT_TESTBENCH_FLAGS_ALWAYS_ON) { rx_config.flags |= RMT_CHANNEL_FLAGS_AWARE_DFS; } #if SOC_RMT_SUPPORT_RX_DEMODULATION if (flags & RMT_TESTBENCH_FLAGS_CARRIER_ON) { rx_config.rx_config.rm_carrier = true; rx_config.rx_config.carrier_freq_hz = 38000; rx_config.rx_config.carrier_duty_percent = 33; rx_config.rx_config.carrier_level = RMT_CARRIER_LEVEL_HIGH; } #endif TEST_ESP_OK(rmt_config(&rx_config)); } // Routing internal signals by IO Matrix (bind rmt tx and rx signal on the same GPIO) gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[RMT_DATA_IO], PIN_FUNC_GPIO); TEST_ESP_OK(gpio_set_direction(RMT_DATA_IO, GPIO_MODE_INPUT_OUTPUT)); esp_rom_gpio_connect_out_signal(RMT_DATA_IO, RMT_SIG_OUT0_IDX + tx_channel, 0, 0); esp_rom_gpio_connect_in_signal(RMT_DATA_IO, RMT_SIG_IN0_IDX + rx_channel, 0); // install driver if (tx_channel >= 0) { TEST_ESP_OK(rmt_driver_install(tx_channel, 0, 0)); ir_builder_config_t ir_builder_config = IR_BUILDER_DEFAULT_CONFIG((ir_dev_t)tx_channel); ir_builder_config.flags = IR_TOOLS_FLAGS_PROTO_EXT; s_ir_builder = ir_builder_rmt_new_nec(&ir_builder_config); TEST_ASSERT_NOT_NULL(s_ir_builder); } if (rx_channel >= 0) { TEST_ESP_OK(rmt_driver_install(rx_channel, 3000, 0)); ir_parser_config_t ir_parser_config = IR_PARSER_DEFAULT_CONFIG((ir_dev_t)rx_channel); ir_parser_config.flags = IR_TOOLS_FLAGS_PROTO_EXT | IR_TOOLS_FLAGS_INVERSE; s_ir_parser = ir_parser_rmt_new_nec(&ir_parser_config); TEST_ASSERT_NOT_NULL(s_ir_parser); } } static void rmt_clean_testbench(int tx_channel, int rx_channel) { if (tx_channel >= 0) { TEST_ESP_OK(rmt_driver_uninstall(tx_channel)); TEST_ESP_OK(s_ir_builder->del(s_ir_builder)); s_ir_builder = NULL; } if (rx_channel >= 0) { TEST_ESP_OK(rmt_driver_uninstall(rx_channel)); TEST_ESP_OK(s_ir_parser->del(s_ir_parser)); s_ir_parser = NULL; } } TEST_CASE("RMT wrong configuration", "[rmt]") { rmt_config_t correct_config = RMT_DEFAULT_CONFIG_TX(RMT_DATA_IO, 0); rmt_config_t wrong_config = correct_config; wrong_config.clk_div = 0; TEST_ASSERT(rmt_config(&wrong_config) == ESP_ERR_INVALID_ARG); wrong_config = correct_config; wrong_config.channel = SOC_RMT_CHANNELS_PER_GROUP; TEST_ASSERT(rmt_config(&wrong_config) == ESP_ERR_INVALID_ARG); wrong_config = correct_config; wrong_config.channel = 2; wrong_config.mem_block_num = 8; TEST_ASSERT(rmt_config(&wrong_config) == ESP_ERR_INVALID_ARG); TEST_ASSERT(rmt_set_mem_block_num(wrong_config.channel, -1) == ESP_ERR_INVALID_ARG); } TEST_CASE("RMT miscellaneous functions", "[rmt]") { rmt_channel_t channel = 0; uint8_t div_cnt; rmt_source_clk_t src_clk; uint8_t memNum; uint16_t idle_thres; rmt_mem_owner_t owner; // TX related functions rmt_setup_testbench(channel, -1, 0); TEST_ESP_OK(rmt_set_mem_block_num(channel, 2)); TEST_ESP_OK(rmt_get_mem_block_num(channel, &memNum)); TEST_ASSERT_EQUAL_UINT8(2, memNum); TEST_ESP_OK(rmt_set_clk_div(channel, 160)); TEST_ESP_OK(rmt_get_clk_div(channel, &div_cnt)); TEST_ASSERT_EQUAL_UINT8(160, div_cnt); #if SOC_RMT_SUPPORT_REF_TICK TEST_ESP_OK(rmt_set_source_clk(channel, RMT_BASECLK_REF)); TEST_ESP_OK(rmt_get_source_clk(channel, &src_clk)); TEST_ASSERT_EQUAL_INT(RMT_BASECLK_REF, src_clk); #endif #if SOC_RMT_SUPPORT_XTAL TEST_ESP_OK(rmt_set_source_clk(channel, RMT_BASECLK_XTAL)); TEST_ESP_OK(rmt_get_source_clk(channel, &src_clk)); TEST_ASSERT_EQUAL_INT(RMT_BASECLK_XTAL, src_clk); #endif TEST_ESP_OK(rmt_set_tx_carrier(channel, 0, 1, 0, 1)); TEST_ESP_OK(rmt_set_idle_level(channel, 1, 0)); rmt_clean_testbench(channel, -1); // RX related functions channel = RMT_RX_CHANNEL_ENCODING_START; rmt_setup_testbench(-1, channel, 0); TEST_ESP_OK(rmt_set_rx_idle_thresh(channel, 200)); TEST_ESP_OK(rmt_get_rx_idle_thresh(channel, &idle_thres)); TEST_ASSERT_EQUAL_UINT16(200, idle_thres); TEST_ESP_OK(rmt_set_rx_filter(channel, 1, 100)); TEST_ESP_OK(rmt_set_memory_owner(channel, RMT_MEM_OWNER_RX)); TEST_ESP_OK(rmt_get_memory_owner(channel, &owner)); TEST_ASSERT_EQUAL_INT(RMT_MEM_OWNER_RX, owner); rmt_clean_testbench(-1, channel); } TEST_CASE("RMT multiple channels", "[rmt]") { rmt_config_t tx_cfg = RMT_DEFAULT_CONFIG_TX(RMT_DATA_IO, 0); for (int i = 0; i < SOC_RMT_TX_CANDIDATES_PER_GROUP; i++) { tx_cfg.channel = i; TEST_ESP_OK(rmt_config(&tx_cfg)); TEST_ESP_OK(rmt_driver_install(tx_cfg.channel, 0, 0)); } for (int i = 0; i < SOC_RMT_TX_CANDIDATES_PER_GROUP; i++) { TEST_ESP_OK(rmt_driver_uninstall(i)); } rmt_config_t rx_cfg = RMT_DEFAULT_CONFIG_RX(RMT_DATA_IO, RMT_RX_CHANNEL_ENCODING_START); for (int i = RMT_RX_CHANNEL_ENCODING_START; i < SOC_RMT_CHANNELS_PER_GROUP; i++) { rx_cfg.channel = i; TEST_ESP_OK(rmt_config(&rx_cfg)); TEST_ESP_OK(rmt_driver_install(rx_cfg.channel, 0, 0)); } for (int i = RMT_RX_CHANNEL_ENCODING_START; i < SOC_RMT_CHANNELS_PER_GROUP; i++) { TEST_ESP_OK(rmt_driver_uninstall(i)); } } TEST_CASE("RMT install/uninstall test", "[rmt]") { rmt_config_t tx_cfg = RMT_DEFAULT_CONFIG_TX(RMT_DATA_IO, RMT_TX_CHANNEL_ENCODING_END); TEST_ESP_OK(rmt_config(&tx_cfg)); for (int i = 0; i < 100; i++) { TEST_ESP_OK(rmt_driver_install(tx_cfg.channel, 1000, 0)); TEST_ESP_OK(rmt_driver_uninstall(tx_cfg.channel)); } rmt_config_t rx_cfg = RMT_DEFAULT_CONFIG_RX(RMT_DATA_IO, RMT_RX_CHANNEL_ENCODING_START); TEST_ESP_OK(rmt_config(&rx_cfg)); for (int i = 0; i < 100; i++) { TEST_ESP_OK(rmt_driver_install(rx_cfg.channel, 1000, 0)); TEST_ESP_OK(rmt_driver_uninstall(rx_cfg.channel)); } } static void test_rmt_translator(const void *src, rmt_item32_t *dest, size_t src_size, size_t wanted_num, size_t *translated_size, size_t *item_num) { const rmt_item32_t bit0 = {{{ 10, 1, 20, 0 }}}; //Logical 0 const rmt_item32_t bit1 = {{{ 20, 1, 10, 0 }}}; //Logical 1 size_t size = 0; size_t num = 0; uint8_t *psrc = (uint8_t *)src; rmt_item32_t *pdest = dest; while (size < src_size && num < wanted_num) { for (int i = 0; i < 8; i++) { // MSB first if (*psrc & (1 << (7 - i))) { pdest->val = bit1.val; } else { pdest->val = bit0.val; } num++; pdest++; } size++; psrc++; } *translated_size = size; *item_num = num; int *user_data = NULL; rmt_translator_get_context(item_num, (void **)&user_data); esp_rom_printf("user data=%d\r\n", *user_data); *user_data = 100; } TEST_CASE("RMT translator with user context", "[rmt]") { rmt_config_t tx_cfg = RMT_DEFAULT_CONFIG_TX(RMT_DATA_IO, 0); TEST_ESP_OK(rmt_config(&tx_cfg)); TEST_ESP_OK(rmt_driver_install(tx_cfg.channel, 0, 0)); rmt_translator_init(tx_cfg.channel, test_rmt_translator); int user_data = 999; rmt_translator_set_context(tx_cfg.channel, &user_data); uint8_t test_buf[] = {1, 2, 3, 4, 5, 6}; rmt_write_sample(tx_cfg.channel, test_buf, sizeof(test_buf), true); vTaskDelay(pdMS_TO_TICKS(100)); TEST_ASSERT_EQUAL(100, user_data); TEST_ESP_OK(rmt_driver_uninstall(tx_cfg.channel)); } static void do_nec_tx_rx(uint32_t flags) { RingbufHandle_t rb = NULL; rmt_item32_t *items = NULL; size_t length = 0; uint32_t addr = 0x10; uint32_t cmd = 0x20; bool repeat = false; int tx_channel = 0; int rx_channel = RMT_RX_CHANNEL_ENCODING_START + 1; // test on different flags combinations rmt_setup_testbench(tx_channel, rx_channel, flags); // get ready to receive TEST_ESP_OK(rmt_get_ringbuf_handle(rx_channel, &rb)); TEST_ASSERT_NOT_NULL(rb); TEST_ESP_OK(rmt_rx_start(rx_channel, true)); vTaskDelay(pdMS_TO_TICKS(1000)); // build NEC codes cmd = 0x20; while (cmd <= 0x30) { ESP_LOGI(TAG, "Send command 0x%x to address 0x%x", cmd, addr); // Send new key code TEST_ESP_OK(s_ir_builder->build_frame(s_ir_builder, addr, cmd)); TEST_ESP_OK(s_ir_builder->get_result(s_ir_builder, &items, &length)); if (cmd & 0x01) { TEST_ESP_OK(rmt_write_items(tx_channel, items, length, false)); // no wait TEST_ESP_OK(rmt_wait_tx_done(tx_channel, portMAX_DELAY)); } else { TEST_ESP_OK(rmt_write_items(tx_channel, items, length, true)); // wait until done } cmd++; } // parse NEC codes while (rb) { items = (rmt_item32_t *) xRingbufferReceive(rb, &length, 1000); if (items) { length /= 4; // one RMT = 4 Bytes if (s_ir_parser->input(s_ir_parser, items, length) == ESP_OK) { if (s_ir_parser->get_scan_code(s_ir_parser, &addr, &cmd, &repeat) == ESP_OK) { ESP_LOGI(TAG, "Scan Code %s --- addr: 0x%04x cmd: 0x%04x", repeat ? "(repeat)" : "", addr, cmd); } } vRingbufferReturnItem(rb, (void *) items); } else { ESP_LOGI(TAG, "done"); break; } } TEST_ASSERT_EQUAL(0x30, cmd); rmt_clean_testbench(tx_channel, rx_channel); } // basic nec tx and rx test, using APB source clock, no modulation TEST_CASE("RMT NEC TX and RX (APB)", "[rmt]") { do_nec_tx_rx(0); } // test with RMT_TESTBENCH_FLAGS_ALWAYS_ON will take a long time (REF_TICK is much slower than APB CLOCK) TEST_CASE("RMT NEC TX and RX (always on)", "[rmt][timeout=240]") { do_nec_tx_rx(RMT_TESTBENCH_FLAGS_ALWAYS_ON); } #if SOC_RMT_SUPPORT_RX_DEMODULATION // basic nec tx and rx test, using APB source clock, with modulation and demodulation on TEST_CASE("RMT NEC TX and RX (Modulation/Demodulation)", "[rmt]") { do_nec_tx_rx(RMT_TESTBENCH_FLAGS_CARRIER_ON); } #endif TEST_CASE("RMT TX (SOC_RMT_MEM_WORDS_PER_CHANNEL-1) symbols", "[rmt][boundary]") { int tx_channel = 0; rmt_setup_testbench(tx_channel, -1, 0); rmt_item32_t *items = malloc(sizeof(rmt_item32_t) * (SOC_RMT_MEM_WORDS_PER_CHANNEL - 1)); for (int i = 0; i < SOC_RMT_MEM_WORDS_PER_CHANNEL - 1; i++) { items[i] = (rmt_item32_t) { {{ 200, 1, 200, 0 } } }; } TEST_ESP_OK(rmt_write_items(tx_channel, items, SOC_RMT_MEM_WORDS_PER_CHANNEL - 1, 1)); free(items); rmt_clean_testbench(tx_channel, -1); } TEST_CASE("RMT TX stop", "[rmt]") { RingbufHandle_t rb = NULL; rmt_item32_t *frames = NULL; size_t length = 0; uint32_t count = 10; uint32_t addr = 0x10; uint32_t cmd = 0x20; bool repeat = false; int tx_channel = 0; int rx_channel = RMT_RX_CHANNEL_ENCODING_START + 1; rmt_setup_testbench(tx_channel, rx_channel, 0); // re-install ir_builder, to enlarge internal buffer size TEST_ESP_OK(s_ir_builder->del(s_ir_builder)); ir_builder_config_t ir_builder_config = IR_BUILDER_DEFAULT_CONFIG((ir_dev_t)tx_channel); ir_builder_config.buffer_size *= count; ir_builder_config.flags = IR_TOOLS_FLAGS_PROTO_EXT; s_ir_builder = ir_builder_rmt_new_nec(&ir_builder_config); TEST_ASSERT_NOT_NULL(s_ir_builder); // get ready to receive TEST_ESP_OK(rmt_get_ringbuf_handle(rx_channel, &rb)); TEST_ASSERT_NOT_NULL(rb); TEST_ESP_OK(rmt_rx_start(rx_channel, true)); vTaskDelay(pdMS_TO_TICKS(1000)); // build NEC codes ESP_LOGI(TAG, "Plan to send command 0x%x~0x%x to address 0x%x", cmd, cmd + count, addr); for (int i = 0; i <= count; i++) { TEST_ESP_OK(s_ir_builder->build_frame(s_ir_builder, addr, cmd)); cmd++; } TEST_ESP_OK(s_ir_builder->get_result(s_ir_builder, &frames, &length)); // send for 1 second and then stop TEST_ESP_OK(rmt_write_items(tx_channel, frames, length, true)); vTaskDelay(pdMS_TO_TICKS(100)); TEST_ESP_OK(rmt_tx_stop(tx_channel)); // parse NEC codes uint32_t num = 0; while (rb) { frames = (rmt_item32_t *) xRingbufferReceive(rb, &length, 1000); if (frames) { length /= 4; // one RMT = 4 Bytes if (s_ir_parser->input(s_ir_parser, frames, length) == ESP_OK) { if (s_ir_parser->get_scan_code(s_ir_parser, &addr, &cmd, &repeat) == ESP_OK) { ESP_LOGI(TAG, "Scan Code %s --- addr: 0x%04x cmd: 0x%04x", repeat ? "(repeat)" : "", addr, cmd); num++; } } vRingbufferReturnItem(rb, (void *) frames); } else { ESP_LOGI(TAG, "done"); break; } } TEST_ASSERT(num < count); rmt_clean_testbench(tx_channel, rx_channel); } #if SOC_RMT_SUPPORT_RX_PINGPONG TEST_CASE("RMT Ping-Pong operation", "[rmt]") { int tx_channel = 0; int rx_channel = RMT_RX_CHANNEL_ENCODING_START + 1; rmt_item32_t frames[SOC_RMT_MEM_WORDS_PER_CHANNEL * 2]; // send two block data using ping-pong RingbufHandle_t rb = NULL; uint32_t size = sizeof(frames) / sizeof(frames[0]); // The design of the following test frame should trigger three rx threshold interrupt and one rx end interrupt int i = 0; for (i = 0; i < size - 1; i++) { frames[i].level0 = 1; frames[i].duration0 = 100; frames[i].level1 = 0; frames[i].duration1 = 100; } frames[i].level0 = 1; frames[i].duration0 = 0; frames[i].level1 = 0; frames[i].duration1 = 0; rmt_setup_testbench(tx_channel, rx_channel, 0); // get ready to receive TEST_ESP_OK(rmt_get_ringbuf_handle(rx_channel, &rb)); TEST_ASSERT_NOT_NULL(rb); TEST_ESP_OK(rmt_rx_start(rx_channel, true)); vTaskDelay(pdMS_TO_TICKS(1000)); for (uint32_t test_count = 0; test_count < 5; test_count++) { TEST_ESP_OK(rmt_write_items(tx_channel, frames, size, true)); // parse received data size_t length = 0; rmt_item32_t *items = (rmt_item32_t *) xRingbufferReceive(rb, &length, 1000); if (items) { vRingbufferReturnItem(rb, (void *) items); } TEST_ASSERT_EQUAL(4 * (size - 1), length); } rmt_clean_testbench(tx_channel, rx_channel); } #endif #if SOC_RMT_SUPPORT_TX_SYNCHRO static uint32_t tx_end_time0, tx_end_time1; static void rmt_tx_end_cb(rmt_channel_t channel, void *arg) { if (channel == 0) { tx_end_time0 = cpu_hal_get_cycle_count(); } else { tx_end_time1 = cpu_hal_get_cycle_count(); } } TEST_CASE("RMT TX simultaneously", "[rmt]") { rmt_item32_t frames[SOC_RMT_MEM_WORDS_PER_CHANNEL]; uint32_t size = sizeof(frames) / sizeof(frames[0]); int channel0 = 0; int channel1 = 1; int i = 0; for (i = 0; i < size - 1; i++) { frames[i].level0 = 1; frames[i].duration0 = 1000; frames[i].level1 = 0; frames[i].duration1 = 1000; } frames[i].level0 = 0; frames[i].duration0 = 0; frames[i].level1 = 0; frames[i].duration1 = 0; rmt_config_t tx_config0 = RMT_DEFAULT_CONFIG_TX(4, channel0); rmt_config_t tx_config1 = RMT_DEFAULT_CONFIG_TX(5, channel1); TEST_ESP_OK(rmt_config(&tx_config0)); TEST_ESP_OK(rmt_config(&tx_config1)); TEST_ESP_OK(rmt_driver_install(channel0, 0, 0)); TEST_ESP_OK(rmt_driver_install(channel1, 0, 0)); rmt_register_tx_end_callback(rmt_tx_end_cb, NULL); TEST_ESP_OK(rmt_add_channel_to_group(channel0)); TEST_ESP_OK(rmt_add_channel_to_group(channel1)); TEST_ESP_OK(rmt_write_items(channel0, frames, size, false)); vTaskDelay(pdMS_TO_TICKS(1000)); TEST_ESP_OK(rmt_write_items(channel1, frames, size, false)); TEST_ESP_OK(rmt_wait_tx_done(channel0, portMAX_DELAY)); TEST_ESP_OK(rmt_wait_tx_done(channel1, portMAX_DELAY)); ESP_LOGI(TAG, "tx_end_time0=%u, tx_end_time1=%u", tx_end_time0, tx_end_time1); TEST_ASSERT_LESS_OR_EQUAL_UINT32(2000, tx_end_time1 - tx_end_time0); TEST_ESP_OK(rmt_remove_channel_from_group(channel0)); TEST_ESP_OK(rmt_remove_channel_from_group(channel1)); TEST_ESP_OK(rmt_driver_uninstall(channel0)); TEST_ESP_OK(rmt_driver_uninstall(channel1)); } #endif #if SOC_RMT_SUPPORT_TX_LOOP_COUNT static void rmt_tx_loop_end(rmt_channel_t channel, void *arg) { rmt_tx_stop(channel); } TEST_CASE("RMT TX loop", "[rmt]") { RingbufHandle_t rb = NULL; rmt_item32_t *items = NULL; size_t length = 0; uint32_t addr = 0x10; uint32_t cmd = 0x20; bool repeat = false; int tx_channel = 0; int rx_channel = RMT_RX_CHANNEL_ENCODING_START + 1; uint32_t count = 0; rmt_setup_testbench(tx_channel, rx_channel, RMT_TESTBENCH_FLAGS_LOOP_ON); // get ready to receive TEST_ESP_OK(rmt_get_ringbuf_handle(rx_channel, &rb)); TEST_ASSERT_NOT_NULL(rb); TEST_ESP_OK(rmt_rx_start(rx_channel, true)); vTaskDelay(pdMS_TO_TICKS(1000)); // register callback functions, invoked when tx loop count to ceiling rmt_register_tx_end_callback(rmt_tx_loop_end, NULL); // build NEC codes ESP_LOGI(TAG, "Send command 0x%x to address 0x%x", cmd, addr); // Send new key code TEST_ESP_OK(s_ir_builder->build_frame(s_ir_builder, addr, cmd)); TEST_ESP_OK(s_ir_builder->get_result(s_ir_builder, &items, &length)); TEST_ESP_OK(rmt_write_items(tx_channel, items, length, true)); // wait until done // parse NEC codes while (rb) { items = (rmt_item32_t *) xRingbufferReceive(rb, &length, 1000); if (items) { length /= 4; // one RMT = 4 Bytes if (s_ir_parser->input(s_ir_parser, items, length) == ESP_OK) { if (s_ir_parser->get_scan_code(s_ir_parser, &addr, &cmd, &repeat) == ESP_OK) { count++; ESP_LOGI(TAG, "Scan Code %s --- addr: 0x%04x cmd: 0x%04x", repeat ? "(repeat)" : "", addr, cmd); } } vRingbufferReturnItem(rb, (void *) items); } else { ESP_LOGI(TAG, "done"); break; } } TEST_ASSERT_EQUAL(10, count); rmt_clean_testbench(tx_channel, rx_channel); } #endif