/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // The LL layer for MMU register operations #pragma once #include "soc/spi_mem_reg.h" #include "soc/ext_mem_defs.h" #include "hal/assert.h" #include "hal/mmu_types.h" #include "hal/efuse_ll.h" #ifdef __cplusplus extern "C" { #endif /** * Convert MMU virtual address to linear address * * @param vaddr virtual address * * @return linear address */ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr) { return vaddr & SOC_MMU_LINEAR_ADDR_MASK; } /** * Convert MMU linear address to virtual address * * @param laddr linear address * @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t` * * @return virtual address */ static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type) { //On ESP32C6, I/D share the same vaddr range return SOC_MMU_IBUS_VADDR_BASE | laddr; } __attribute__((always_inline)) static inline bool mmu_ll_cache_encryption_enabled(void) { unsigned cnt = efuse_ll_get_flash_crypt_cnt(); // 3 bits wide, any odd number - 1 or 3 - bits set means encryption is on cnt = ((cnt >> 2) ^ (cnt >> 1) ^ cnt) & 0x1; return (cnt == 1); } /** * Get MMU page size * * @param mmu_id MMU ID * * @return MMU page size code */ __attribute__((always_inline)) static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id) { (void)mmu_id; uint32_t page_size_code = REG_GET_FIELD(SPI_MEM_MMU_POWER_CTRL_REG(0), SPI_MEM_MMU_PAGE_SIZE); return (page_size_code == 0) ? MMU_PAGE_64KB : \ (page_size_code == 1) ? MMU_PAGE_32KB : \ (page_size_code == 2) ? MMU_PAGE_16KB : \ MMU_PAGE_8KB; } /** * Set MMU page size * * @param size MMU page size */ __attribute__((always_inline)) static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size) { uint8_t reg_val = (size == MMU_PAGE_64KB) ? 0 : \ (size == MMU_PAGE_32KB) ? 1 : \ (size == MMU_PAGE_16KB) ? 2 : \ (size == MMU_PAGE_8KB) ? 3 : 0; REG_SET_FIELD(SPI_MEM_MMU_POWER_CTRL_REG(0), SPI_MEM_MMU_PAGE_SIZE, reg_val); } /** * Check if the external memory vaddr region is valid * * @param mmu_id MMU ID * @param vaddr_start start of the virtual address * @param len length, in bytes * @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t` * * @return * True for valid */ __attribute__((always_inline)) static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type) { (void)mmu_id; (void)type; uint32_t vaddr_end = vaddr_start + len; return (ADDRESS_IN_IRAM0_CACHE(vaddr_start) && ADDRESS_IN_IRAM0_CACHE(vaddr_end)) || (ADDRESS_IN_DRAM0_CACHE(vaddr_start) && ADDRESS_IN_DRAM0_CACHE(vaddr_end)); } /** * Check if the paddr region is valid * * @param mmu_id MMU ID * @param paddr_start start of the physical address * @param len length, in bytes * * @return * True for valid */ static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len) { (void)mmu_id; return (paddr_start < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) && (len < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) && ((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)); } /** * To get the MMU table entry id to be mapped * * @param mmu_id MMU ID * @param vaddr virtual address to be mapped * * @return * MMU table entry id */ __attribute__((always_inline)) static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr) { (void)mmu_id; mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id); uint32_t shift_code = 0; switch (page_size) { case MMU_PAGE_64KB: shift_code = 16; break; case MMU_PAGE_32KB: shift_code = 15; break; case MMU_PAGE_16KB: shift_code = 14; break; case MMU_PAGE_8KB: shift_code = 13; break; default: HAL_ASSERT(shift_code); } return ((vaddr & MMU_VADDR_MASK) >> shift_code); } /** * Format the paddr to be mappable * * @param mmu_id MMU ID * @param paddr physical address to be mapped * * @return * mmu_val - paddr in MMU table supported format */ __attribute__((always_inline)) static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target) { (void)mmu_id; (void)target; mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id); uint32_t shift_code = 0; switch (page_size) { case MMU_PAGE_64KB: shift_code = 16; break; case MMU_PAGE_32KB: shift_code = 15; break; case MMU_PAGE_16KB: shift_code = 14; break; case MMU_PAGE_8KB: shift_code = 13; break; default: HAL_ASSERT(shift_code); } return paddr >> shift_code; } /** * Write to the MMU table to map the virtual memory and the physical memory * * @param mmu_id MMU ID * @param entry_id MMU entry ID * @param mmu_val Value to be set into an MMU entry, for physical address * @param target MMU target physical memory. */ __attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, uint32_t target) { (void)mmu_id; (void)target; uint32_t mmu_raw_value; if (mmu_ll_cache_encryption_enabled()) { mmu_val |= MMU_SENSITIVE; } /* Note: for ESP32-H2, invert invalid bit for compatible with upper-layer software */ mmu_raw_value = mmu_val ^ MMU_INVALID_MASK; REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), entry_id); REG_WRITE(SPI_MEM_MMU_ITEM_CONTENT_REG(0), mmu_raw_value); } /** * Read the raw value from MMU table * * @param mmu_id MMU ID * @param entry_id MMU entry ID * @param mmu_val Value to be read from MMU table */ __attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; uint32_t mmu_raw_value; uint32_t ret; REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), entry_id); mmu_raw_value = REG_READ(SPI_MEM_MMU_ITEM_CONTENT_REG(0)); if (mmu_ll_cache_encryption_enabled()) { mmu_raw_value &= ~MMU_SENSITIVE; } /* Note: for ESP32-H2, invert invalid bit for compatible with upper-layer software */ ret = mmu_raw_value ^ MMU_INVALID_MASK; return ret; } /** * Set MMU table entry as invalid * * @param mmu_id MMU ID * @param entry_id MMU entry */ __attribute__((always_inline)) static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), entry_id); REG_WRITE(SPI_MEM_MMU_ITEM_CONTENT_REG(0), MMU_INVALID); } // /** // * Get MMU table entry is invalid // * // * @param mmu_id MMU ID // * @param entry_id MMU entry ID // * return ture for MMU entry is invalid, false for valid // */ // __attribute__((always_inline)) static inline bool mmu_ll_get_entry_is_invalid(uint32_t mmu_id, uint32_t entry_id) // { // (void)mmu_id; // uint32_t mmu_raw_value; // REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), entry_id); // mmu_raw_value = REG_READ(SPI_MEM_MMU_ITEM_CONTENT_REG(0)); // /* Note: for ESP32-H2, the invalid-bit of MMU: 0 for invalid, 1 for valid */ // return (mmu_raw_value & MMU_INVALID_MASK) ? false : true; // } /** * Unmap all the items in the MMU table * * @param mmu_id MMU ID */ __attribute__((always_inline)) static inline void mmu_ll_unmap_all(uint32_t mmu_id) { for (int i = 0; i < MMU_ENTRY_NUM; i++) { mmu_ll_set_entry_invalid(mmu_id, i); } } /** * Check MMU table entry value is valid * * @param mmu_id MMU ID * @param entry_id MMU entry ID * * @return Ture for MMU entry is valid; False for invalid */ static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; HAL_ASSERT(entry_id < MMU_ENTRY_NUM); REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), entry_id); return (REG_READ(SPI_MEM_MMU_ITEM_CONTENT_REG(0)) & MMU_VALID) ? true : false; } /** * Get the MMU table entry target * * @param mmu_id MMU ID * @param entry_id MMU entry ID * * @return Target, see `mmu_target_t` */ static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; return MMU_TARGET_FLASH0; } /** * Convert MMU entry ID to paddr base * * @param mmu_id MMU ID * @param entry_id MMU entry ID * * @return paddr base */ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id) { (void)mmu_id; HAL_ASSERT(entry_id < MMU_ENTRY_NUM); mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id); uint32_t shift_code = 0; switch (page_size) { case MMU_PAGE_64KB: shift_code = 16; break; case MMU_PAGE_32KB: shift_code = 15; break; case MMU_PAGE_16KB: shift_code = 14; break; case MMU_PAGE_8KB: shift_code = 13; break; default: HAL_ASSERT(shift_code); } REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), entry_id); return (REG_READ(SPI_MEM_MMU_ITEM_CONTENT_REG(0)) & MMU_VALID_VAL_MASK) << shift_code; } /** * Find the MMU table entry ID based on table map value * @note This function can only find the first match entry ID. However it is possible that a physical address * is mapped to multiple virtual addresses * * @param mmu_id MMU ID * @param mmu_val map value to be read from MMU table standing for paddr * @param target physical memory target, see `mmu_target_t` * * @return MMU entry ID, -1 for invalid */ static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target) { (void)mmu_id; for (int i = 0; i < MMU_ENTRY_NUM; i++) { if (mmu_ll_check_entry_valid(mmu_id, i)) { if (mmu_ll_get_entry_target(mmu_id, i) == target) { REG_WRITE(SPI_MEM_MMU_ITEM_INDEX_REG(0), i); if ((REG_READ(SPI_MEM_MMU_ITEM_CONTENT_REG(0)) & MMU_VALID_VAL_MASK) == mmu_val) { return i; } } } } return -1; } /** * Convert MMU entry ID to vaddr base * * @param mmu_id MMU ID * @param entry_id MMU entry ID * @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t` */ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type) { (void)mmu_id; mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id); uint32_t shift_code = 0; switch (page_size) { case MMU_PAGE_64KB: shift_code = 16; break; case MMU_PAGE_32KB: shift_code = 15; break; case MMU_PAGE_16KB: shift_code = 14; break; case MMU_PAGE_8KB: shift_code = 13; break; default: HAL_ASSERT(shift_code); } uint32_t laddr = entry_id << shift_code; return mmu_ll_laddr_to_vaddr(laddr, type); } #ifdef __cplusplus } #endif