/* * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /* Tests for the spi_slave device driver */ #include #include "sdkconfig.h" #include "unity.h" #include "test/test_common_spi.h" #include "driver/spi_master.h" #include "driver/spi_slave.h" #include "driver/gpio.h" #include "esp_log.h" #include "esp_rom_gpio.h" #if (TEST_SPI_PERIPH_NUM >= 2) //These will only be enabled on chips with 2 or more SPI peripherals #ifndef CONFIG_SPIRAM //This test should be removed once the timing test is merged. static spi_device_handle_t spi; static WORD_ALIGNED_ATTR uint8_t master_txbuf[320]; static WORD_ALIGNED_ATTR uint8_t master_rxbuf[320]; static WORD_ALIGNED_ATTR uint8_t slave_txbuf[320]; static WORD_ALIGNED_ATTR uint8_t slave_rxbuf[320]; static const uint8_t master_send[] = { 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43 }; static const uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 }; static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi ) { esp_rom_gpio_connect_out_signal( gpio, sigo, false, false ); esp_rom_gpio_connect_in_signal( gpio, sigi, false ); } static void master_init( spi_device_handle_t* spi) { esp_err_t ret; spi_bus_config_t buscfg={ .miso_io_num=PIN_NUM_MISO, .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=UNCONNECTED_PIN, .quadhd_io_num=-1 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=4*1000*1000, //currently only up to 4MHz for internel connect .mode=0, //SPI mode 0 .spics_io_num=PIN_NUM_CS, //CS pin .queue_size=7, //We want to be able to queue 7 transactions at a time .pre_cb=NULL, .cs_ena_posttrans=5, .cs_ena_pretrans=1, }; //Initialize the SPI bus ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO); TEST_ASSERT(ret==ESP_OK); //Attach the LCD to the SPI bus ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi); TEST_ASSERT(ret==ESP_OK); } static void slave_init(void) { //Configuration for the SPI bus spi_bus_config_t buscfg={ .mosi_io_num=PIN_NUM_MOSI, .miso_io_num=PIN_NUM_MISO, .sclk_io_num=PIN_NUM_CLK }; //Configuration for the SPI slave interface spi_slave_interface_config_t slvcfg={ .mode=0, .spics_io_num=PIN_NUM_CS, .queue_size=3, .flags=0, }; //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected. gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY); gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY); gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY); //Initialize SPI slave interface TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO)); } static void custom_setup(void) { //Initialize buffers memset(master_txbuf, 0, sizeof(master_txbuf)); memset(master_rxbuf, 0, sizeof(master_rxbuf)); memset(slave_txbuf, 0, sizeof(slave_txbuf)); memset(slave_rxbuf, 0, sizeof(slave_rxbuf)); //Initialize SPI Master master_init( &spi ); //Initialize SPI Slave slave_init(); //Do internal connections int_connect( PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, spi_periph_signal[TEST_SLAVE_HOST].spiq_in ); int_connect( PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, spi_periph_signal[TEST_SPI_HOST].spid_in ); int_connect( PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], spi_periph_signal[TEST_SLAVE_HOST].spics_in ); int_connect( PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in ); } static void custom_teardown(void) { TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK); } TEST_CASE("test fullduplex slave with only RX direction","[spi]") { custom_setup(); memcpy(master_txbuf, master_send, sizeof(master_send)); for ( int i = 0; i < 4; i ++ ) { //slave send spi_slave_transaction_t slave_t; spi_slave_transaction_t* out; memset(&slave_t, 0, sizeof(spi_slave_transaction_t)); slave_t.length=8*32; slave_t.tx_buffer=NULL; slave_t.rx_buffer=slave_rxbuf; // Colorize RX buffer with known pattern memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf)); TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY)); //send spi_transaction_t t = {}; t.length = 32*(i+1); if ( t.length != 0 ) { t.tx_buffer = master_txbuf; t.rx_buffer = NULL; } spi_device_transmit( spi, (spi_transaction_t*)&t ); //wait for end TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY)); //show result ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len); ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 ); ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8); TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 ); TEST_ASSERT_EQUAL( t.length, slave_t.trans_len ); } custom_teardown(); ESP_LOGI(SLAVE_TAG, "test passed."); } TEST_CASE("test fullduplex slave with only TX direction","[spi]") { custom_setup(); memcpy(slave_txbuf, slave_send, sizeof(slave_send)); for ( int i = 0; i < 4; i ++ ) { //slave send spi_slave_transaction_t slave_t; spi_slave_transaction_t* out; memset(&slave_t, 0, sizeof(spi_slave_transaction_t)); slave_t.length=8*32; slave_t.tx_buffer=slave_txbuf; slave_t.rx_buffer=NULL; // Colorize RX buffer with known pattern memset( master_rxbuf, 0x66, sizeof(master_rxbuf)); TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY)); //send spi_transaction_t t = {}; t.length = 32*(i+1); if ( t.length != 0 ) { t.tx_buffer = NULL; t.rx_buffer = master_rxbuf; } spi_device_transmit( spi, (spi_transaction_t*)&t ); //wait for end TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY)); //show result ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len); ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 ); ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8); TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 ); TEST_ASSERT_EQUAL( t.length, slave_t.trans_len ); } custom_teardown(); ESP_LOGI(SLAVE_TAG, "test passed."); } TEST_CASE("test slave send unaligned","[spi]") { custom_setup(); memcpy(master_txbuf, master_send, sizeof(master_send)); memcpy(slave_txbuf, slave_send, sizeof(slave_send)); for ( int i = 0; i < 4; i ++ ) { //slave send spi_slave_transaction_t slave_t; spi_slave_transaction_t* out; memset(&slave_t, 0, sizeof(spi_slave_transaction_t)); slave_t.length=8*32; slave_t.tx_buffer=slave_txbuf+i; slave_t.rx_buffer=slave_rxbuf; // Colorize RX buffers with known pattern memset( master_rxbuf, 0x66, sizeof(master_rxbuf)); memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf)); TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY)); //send spi_transaction_t t = {}; t.length = 32*(i+1); if ( t.length != 0 ) { t.tx_buffer = master_txbuf+i; t.rx_buffer = master_rxbuf+i; } spi_device_transmit( spi, (spi_transaction_t*)&t ); //wait for end TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY)); //show result ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len); ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 ); ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 ); ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8); ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8); TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 ); TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 ); TEST_ASSERT_EQUAL( t.length, slave_t.trans_len ); } custom_teardown(); ESP_LOGI(SLAVE_TAG, "test passed."); } #endif // !CONFIG_SPIRAM #endif // #if (TEST_SPI_PERIPH_NUM >= 2) #if (TEST_SPI_PERIPH_NUM == 1) //These tests are for chips which only have 1 SPI controller /******************************************************************************** * Test By Master & Slave (2 boards) * * Master (C3, 8684, H2) && Slave (C3, 8684, H2): * PIN | Master | Slave | * ----| --------- | --------- | * CS | 10 | 10 | * CLK | 6 | 6 | * MOSI| 7 | 7 | * MISO| 2 | 2 | * GND | GND | GND | * ********************************************************************************/ #define BUF_SIZE 320 static void unaligned_test_master(void) { spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG(); TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 0)); spi_device_handle_t spi; spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.clock_speed_hz = 4 * 1000 * 1000; devcfg.queue_size = 7; TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi)); unity_send_signal("Master ready"); uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA); uint8_t *master_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA); //This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does. uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA); srand(199); for (int i = 0; i < BUF_SIZE; i++) { master_send_buf[i] = rand(); } srand(299); for (int i = 0; i < BUF_SIZE; i++) { slave_send_buf[i] = rand(); } for (int i = 0; i < 4; i++) { uint32_t length_in_bytes = 4 * (i + 1); spi_transaction_t t = { .tx_buffer = master_send_buf + i, .rx_buffer = master_recv_buf, .length = length_in_bytes * 8, }; vTaskDelay(50); unity_wait_for_signal("Slave ready"); TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t)); //show result ESP_LOG_BUFFER_HEX("master tx:", master_send_buf+i, length_in_bytes); ESP_LOG_BUFFER_HEX("master rx:", master_recv_buf, length_in_bytes); TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf+i, master_recv_buf, length_in_bytes); //clean memset(master_recv_buf, 0x00, BUF_SIZE); } free(master_send_buf); free(master_recv_buf); free(slave_send_buf); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK); } static void unaligned_test_slave(void) { unity_wait_for_signal("Master ready"); spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG(); spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG(); TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO)); uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA); uint8_t *slave_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA); //This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does. uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA); srand(199); for (int i = 0; i < BUF_SIZE; i++) { master_send_buf[i] = rand(); } srand(299); for (int i = 0; i < BUF_SIZE; i++) { slave_send_buf[i] = rand(); } for (int i = 0; i < 4; i++) { uint32_t mst_length_in_bytes = 4 * (i + 1); spi_slave_transaction_t slave_t = { .tx_buffer = slave_send_buf + i, .rx_buffer = slave_recv_buf, .length = 32 * 8, }; unity_send_signal("Slave ready"); TEST_ESP_OK(spi_slave_transmit(TEST_SPI_HOST, &slave_t, portMAX_DELAY)); //show result ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len); ESP_LOG_BUFFER_HEX("slave tx:", slave_send_buf + i, mst_length_in_bytes); ESP_LOG_BUFFER_HEX("slave rx:", slave_recv_buf, mst_length_in_bytes); TEST_ASSERT_EQUAL(mst_length_in_bytes * 8, slave_t.trans_len); TEST_ASSERT_EQUAL_HEX8_ARRAY(master_send_buf + i, slave_recv_buf, mst_length_in_bytes); //clean memset(slave_recv_buf, 0x00, BUF_SIZE); } free(slave_send_buf); free(slave_recv_buf); free(master_send_buf); TEST_ASSERT(spi_slave_free(TEST_SPI_HOST) == ESP_OK); } TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][test_env=Example_SPI_Multi_device][timeout=120]", unaligned_test_master, unaligned_test_slave); #endif //#if (TEST_SPI_PERIPH_NUM == 1)