/* * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include #include #include "esp_err.h" #include "esp_lcd_types.h" #include "soc/soc_caps.h" #include "hal/lcd_types.h" #ifdef __cplusplus extern "C" { #endif #if SOC_LCD_RGB_SUPPORTED /** * @brief LCD RGB timing structure * @verbatim * Total Width * <---------------------------------------------------> * HSYNC width HBP Active Width HFP * <---><--><--------------------------------------><---> * ____ ____|_______________________________________|____| * |___| | | | * | | | * __| | | | * /|\ /|\ | | | | * | VSYNC| | | | | * |Width\|/ |__ | | | * | /|\ | | | | * | VBP | | | | | * | \|/_____|_________|_______________________________________| | * | /|\ | | / / / / / / / / / / / / / / / / / / / | | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * Total | | | |/ / / / / / / / / / / / / / / / / / / /| | * Height | | | |/ / / / / / / / / / / / / / / / / / / /| | * |Active| | |/ / / / / / / / / / / / / / / / / / / /| | * |Heigh | | |/ / / / / / Active Display Area / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | \|/_____|_________|_______________________________________| | * | /|\ | | * | VFP | | | * \|/ \|/_____|______________________________________________________| * @endverbatim */ typedef struct { uint32_t pclk_hz; /*!< Frequency of pixel clock */ uint32_t h_res; /*!< Horizontal resolution, i.e. the number of pixels in a line */ uint32_t v_res; /*!< Vertical resolution, i.e. the number of lines in the frame */ uint32_t hsync_pulse_width; /*!< Horizontal sync width, unit: PCLK period */ uint32_t hsync_back_porch; /*!< Horizontal back porch, number of PCLK between hsync and start of line active data */ uint32_t hsync_front_porch; /*!< Horizontal front porch, number of PCLK between the end of active data and the next hsync */ uint32_t vsync_pulse_width; /*!< Vertical sync width, unit: number of lines */ uint32_t vsync_back_porch; /*!< Vertical back porch, number of invalid lines between vsync and start of frame */ uint32_t vsync_front_porch; /*!< Vertical front porch, number of invalid lines between the end of frame and the next vsync */ struct { uint32_t hsync_idle_low: 1; /*!< The hsync signal is low in IDLE state */ uint32_t vsync_idle_low: 1; /*!< The vsync signal is low in IDLE state */ uint32_t de_idle_high: 1; /*!< The de signal is high in IDLE state */ uint32_t pclk_active_neg: 1; /*!< Whether the display data is clocked out on the falling edge of PCLK */ uint32_t pclk_idle_high: 1; /*!< The PCLK stays at high level in IDLE phase */ } flags; /*!< LCD RGB timing flags */ } esp_lcd_rgb_timing_t; /** * @brief Type of RGB LCD panel event data */ typedef struct { } esp_lcd_rgb_panel_event_data_t; /** * @brief RGB LCD VSYNC event callback prototype * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel()` * @param[in] edata Panel event data, fed by driver * @param[in] user_ctx User data, passed from `esp_lcd_rgb_panel_register_event_callbacks()` * @return Whether a high priority task has been waken up by this function */ typedef bool (*esp_lcd_rgb_panel_vsync_cb_t)(esp_lcd_panel_handle_t panel, const esp_lcd_rgb_panel_event_data_t *edata, void *user_ctx); /** * @brief Prototype for function to re-fill a bounce buffer, rather than copying from the frame buffer * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel()` * @param[in] bounce_buf Bounce buffer to write data into * @param[in] pos_px How many pixels already were sent to the display in this frame, in other words, * at what pixel the routine should start putting data into bounce_buf * @param[in] len_bytes Length, in bytes, of the bounce buffer. Routine should fill this length fully. * @param[in] user_ctx Opaque pointer that was passed from `esp_lcd_rgb_panel_register_event_callbacks()` * @return Whether a high priority task has been waken up by this function */ typedef bool (*esp_lcd_rgb_panel_bounce_buf_fill_cb_t)(esp_lcd_panel_handle_t panel, void *bounce_buf, int pos_px, int len_bytes, void *user_ctx); /** * @brief Group of supported RGB LCD panel callbacks * @note The callbacks are all running under ISR environment * @note When CONFIG_LCD_RGB_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it should be placed in IRAM. */ typedef struct { esp_lcd_rgb_panel_vsync_cb_t on_vsync; /*!< VSYNC event callback */ esp_lcd_rgb_panel_bounce_buf_fill_cb_t on_bounce_empty; /*!< Bounce buffer empty callback. */ } esp_lcd_rgb_panel_event_callbacks_t; /** * @brief LCD RGB panel configuration structure */ typedef struct { lcd_clock_source_t clk_src; /*!< Clock source for the RGB LCD peripheral */ esp_lcd_rgb_timing_t timings; /*!< RGB timing parameters, including the screen resolution */ size_t data_width; /*!< Number of data lines */ size_t bits_per_pixel; /*!< Frame buffer color depth, in bpp, specially, if set to zero, it will default to `data_width`. When using a Serial RGB interface, this value could be different from `data_width` */ size_t bounce_buffer_size_px; /*!< If it's non-zero, the driver allocates two DRAM bounce buffers for DMA use. DMA fetching from DRAM bounce buffer is much faster than PSRAM frame buffer. */ size_t sram_trans_align; /*!< Alignment of buffers (frame buffer or bounce buffer) that allocated in SRAM */ size_t psram_trans_align; /*!< Alignment of buffers (frame buffer) that allocated in PSRAM */ int hsync_gpio_num; /*!< GPIO used for HSYNC signal */ int vsync_gpio_num; /*!< GPIO used for VSYNC signal */ int de_gpio_num; /*!< GPIO used for DE signal, set to -1 if it's not used */ int pclk_gpio_num; /*!< GPIO used for PCLK signal */ int disp_gpio_num; /*!< GPIO used for display control signal, set to -1 if it's not used */ int data_gpio_nums[SOC_LCD_RGB_DATA_WIDTH]; /*!< GPIOs used for data lines */ struct { uint32_t disp_active_low: 1; /*!< If this flag is enabled, a low level of display control signal can turn the screen on; vice versa */ uint32_t refresh_on_demand: 1; /*!< If this flag is enabled, the host only refresh the frame buffer when `esp_lcd_panel_draw_bitmap` is called. This is useful when the LCD screen has a GRAM and can refresh the LCD by itself. */ uint32_t fb_in_psram: 1; /*!< If this flag is enabled, the frame buffer will be allocated from PSRAM, preferentially */ uint32_t double_fb: 1; /*!< If this flag is enabled, the driver will allocate two screen sized frame buffer */ uint32_t no_fb: 1; /*!< If this flag is enabled, the driver won't allocate frame buffer. Instead, user should fill in the bounce buffer manually in the `on_bounce_empty` callback */ uint32_t bb_invalidate_cache: 1; /*!< If this flag is enabled, in bounce back mode we'll do a cache invalidate on the read data, freeing the cache. Can be dangerous if data is written from other core(s). */ } flags; /*!< LCD RGB panel configuration flags */ } esp_lcd_rgb_panel_config_t; /** * @brief Create RGB LCD panel * * @param[in] rgb_panel_config RGB panel configuration * @param[out] ret_panel Returned LCD panel handle * @return * - ESP_ERR_INVALID_ARG: Create RGB LCD panel failed because of invalid argument * - ESP_ERR_NO_MEM: Create RGB LCD panel failed because of out of memory * - ESP_ERR_NOT_FOUND: Create RGB LCD panel failed because some mandatory hardware resources are not found * - ESP_OK: Create RGB LCD panel successfully */ esp_err_t esp_lcd_new_rgb_panel(const esp_lcd_rgb_panel_config_t *rgb_panel_config, esp_lcd_panel_handle_t *ret_panel); /** * @brief Register LCD RGB panel event callbacks * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel()` * @param[in] callbacks Group of callback functions * @param[in] user_ctx User data, which will be passed to the callback functions directly * @return * - ESP_OK: Set event callbacks successfully * - ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument * - ESP_FAIL: Set event callbacks failed because of other error */ esp_err_t esp_lcd_rgb_panel_register_event_callbacks(esp_lcd_panel_handle_t panel, const esp_lcd_rgb_panel_event_callbacks_t *callbacks, void *user_ctx); /** * @brief Set frequency of PCLK for RGB LCD panel * * @note The PCLK frequency is set in the `esp_lcd_rgb_timing_t` and gets configured during LCD panel initialization. * Usually you don't need to call this function to set the PCLK again, but in some cases, you might want to change the PCLK frequency. * e.g. slow down the PCLK frequency to reduce power consumption or to reduce the memory throughput during OTA. * @note This function doesn't cause the hardware to update the PCLK immediately but to record the new frequency and set a flag internally. * Only in the next VSYNC event handler, will the driver attempt to update the PCLK frequency. * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel()` * @param[in] freq_hz Frequency of pixel clock, in Hz * @return * - ESP_ERR_INVALID_ARG: Set PCLK frequency failed because of invalid argument * - ESP_OK: Set PCLK frequency successfully */ esp_err_t esp_lcd_rgb_panel_set_pclk(esp_lcd_panel_handle_t panel, uint32_t freq_hz); /** * @brief Get the address of the frame buffer(s) that allocated by the driver * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel()` * @param[in] fb_num Number of frame buffer(s) to get. This value must be the same as the number of the following parameters. * @param[out] fb0 Returned address of the frame buffer 0 * @param[out] ... List of other frame buffer addresses * @return * - ESP_ERR_INVALID_ARG: Get frame buffer address failed because of invalid argument * - ESP_OK: Get frame buffer address successfully */ esp_err_t esp_lcd_rgb_panel_get_frame_buffer(esp_lcd_panel_handle_t panel, uint32_t fb_num, void **fb0, ...); /** * @brief Manually trigger once transmission of the frame buffer to the LCD panel * * @note This function should only be called when the RGB panel is working under the `refresh_on_demand` mode. * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel()` * @return * - ESP_ERR_INVALID_ARG: Start a refresh failed because of invalid argument * - ESP_ERR_INVALID_STATE: Start a refresh failed because the LCD panel is not created with the `refresh_on_demand` flag enabled. * - ESP_OK: Start a refresh successfully */ esp_err_t esp_lcd_rgb_panel_refresh(esp_lcd_panel_handle_t panel); /** * @brief LCD color conversion profile */ typedef struct { lcd_color_space_t color_space; /*!< Color space of the image */ lcd_color_range_t color_range; /*!< Color range of the image */ lcd_yuv_sample_t yuv_sample; /*!< YUV sample format of the image */ } esp_lcd_color_conv_profile_t; /** * @brief Configuration of YUG-RGB conversion */ typedef struct { lcd_yuv_conv_std_t std; /*!< YUV conversion standard: BT601, BT709 */ esp_lcd_color_conv_profile_t src; /*!< Color conversion profile of the input image */ esp_lcd_color_conv_profile_t dst; /*!< Color conversion profile of the output image */ } esp_lcd_yuv_conv_config_t; /** * @brief Configure how to convert the color format between RGB and YUV * * @note Pass in `config` as NULL will disable the RGB-YUV converter. * @note The hardware converter can only parse a "packed" storage format, while "planar" and "semi-planar" format is not supported. * * @param[in] panel LCD panel handle, returned from `esp_lcd_new_rgb_panel` * @param[in] config Configuration of RGB-YUV conversion * @return * - ESP_ERR_INVALID_ARG: Configure RGB-YUV conversion failed because of invalid argument * - ESP_ERR_NOT_SUPPORTED: Configure RGB-YUV conversion failed because the conversion mode is not supported by the hardware * - ESP_OK: Configure RGB-YUV conversion successfully */ esp_err_t esp_lcd_rgb_panel_set_yuv_conversion(esp_lcd_panel_handle_t panel, const esp_lcd_yuv_conv_config_t *config); #endif // SOC_LCD_RGB_SUPPORTED #ifdef __cplusplus } #endif