/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // The HAL layer for SPI Slave HD #include #include "esp_types.h" #include "esp_attr.h" #include "esp_err.h" #include "sdkconfig.h" #include "soc/spi_periph.h" #include "soc/lldesc.h" #include "soc/soc_caps.h" #include "hal/spi_slave_hd_hal.h" #include "hal/assert.h" //This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros. #if SOC_GDMA_SUPPORTED #include "soc/gdma_struct.h" #include "hal/gdma_ll.h" #define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan) #define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan) #define spi_dma_ll_rx_enable_burst_data(dev, chan, enable) gdma_ll_rx_enable_data_burst(&GDMA, chan, enable) #define spi_dma_ll_tx_enable_burst_data(dev, chan, enable) gdma_ll_tx_enable_data_burst(&GDMA, chan, enable) #define spi_dma_ll_rx_enable_burst_desc(dev, chan, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, chan, enable) #define spi_dma_ll_tx_enable_burst_desc(dev, chan, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, chan, enable) #define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, chan, enable) #define spi_dma_ll_set_out_eof_generation(dev, chan, enable) gdma_ll_tx_set_eof_mode(&GDMA, chan, enable) #define spi_dma_ll_get_out_eof_desc_addr(dev, chan) gdma_ll_tx_get_eof_desc_addr(&GDMA, chan) #define spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan) gdma_ll_rx_get_success_eof_desc_addr(&GDMA, chan) #define spi_dma_ll_rx_start(dev, chan, addr) do {\ gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\ gdma_ll_rx_start(&GDMA, chan);\ } while (0) #define spi_dma_ll_tx_start(dev, chan, addr) do {\ gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\ gdma_ll_tx_start(&GDMA, chan);\ } while (0) #endif static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t *hal) { spi_dma_ll_rx_enable_burst_data(hal->dma_in, hal->rx_dma_chan, 1); spi_dma_ll_tx_enable_burst_data(hal->dma_out, hal->tx_dma_chan, 1); spi_dma_ll_rx_enable_burst_desc(hal->dma_in, hal->rx_dma_chan, 1); spi_dma_ll_tx_enable_burst_desc(hal->dma_out, hal->tx_dma_chan, 1); spi_dma_ll_enable_out_auto_wrback(hal->dma_out, hal->tx_dma_chan, 1); spi_dma_ll_set_out_eof_generation(hal->dma_out, hal->tx_dma_chan, 1); } void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config) { spi_dev_t* hw = SPI_LL_GET_HW(hal_config->host_id); hal->dev = hw; hal->dma_in = hal_config->dma_in; hal->dma_out = hal_config->dma_out; hal->dma_enabled = hal_config->dma_enabled; hal->tx_dma_chan = hal_config->tx_dma_chan; hal->rx_dma_chan = hal_config->rx_dma_chan; hal->append_mode = hal_config->append_mode; hal->rx_cur_desc = hal->dmadesc_rx; hal->tx_cur_desc = hal->dmadesc_tx; STAILQ_NEXT(&hal->tx_dummy_head.desc, qe) = &hal->dmadesc_tx->desc; hal->tx_dma_head = &hal->tx_dummy_head; STAILQ_NEXT(&hal->rx_dummy_head.desc, qe) = &hal->dmadesc_rx->desc; hal->rx_dma_head = &hal->rx_dummy_head; //Configure slave if (hal_config->dma_enabled) { s_spi_slave_hd_hal_dma_init_config(hal); } spi_ll_slave_hd_init(hw); spi_ll_set_addr_bitlen(hw, hal_config->address_bits); spi_ll_set_command_bitlen(hw, hal_config->command_bits); spi_ll_set_dummy(hw, hal_config->dummy_bits); spi_ll_set_rx_lsbfirst(hw, hal_config->rx_lsbfirst); spi_ll_set_tx_lsbfirst(hw, hal_config->tx_lsbfirst); spi_ll_slave_set_mode(hw, hal_config->mode, (hal_config->dma_enabled)); spi_ll_disable_intr(hw, UINT32_MAX); spi_ll_clear_intr(hw, UINT32_MAX); if (!hal_config->append_mode) { spi_ll_set_intr(hw, SPI_LL_INTR_CMD7 | SPI_LL_INTR_CMD8); bool workaround_required = false; if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD7)) { hal->intr_not_triggered |= SPI_EV_RECV; workaround_required = true; } if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) { hal->intr_not_triggered |= SPI_EV_SEND; workaround_required = true; } if (workaround_required) { //Workaround if the previous interrupts are not writable spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE); } } #if CONFIG_IDF_TARGET_ESP32S2 //Append mode is only supported on ESP32S2 now else { spi_ll_enable_intr(hw, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_CMD7); } #endif spi_ll_slave_hd_set_len_cond(hw, SPI_LL_TRANS_LEN_COND_WRBUF | SPI_LL_TRANS_LEN_COND_WRDMA | SPI_LL_TRANS_LEN_COND_RDBUF | SPI_LL_TRANS_LEN_COND_RDDMA); spi_ll_slave_set_seg_mode(hal->dev, true); } uint32_t spi_salve_hd_hal_get_max_bus_size(spi_slave_hd_hal_context_t *hal) { return hal->dma_desc_num * LLDESC_MAX_NUM_PER_DESC; } uint32_t spi_slave_hd_hal_get_total_desc_size(spi_slave_hd_hal_context_t *hal, uint32_t bus_size) { //See how many dma descriptors we need int dma_desc_ct = (bus_size + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC; if (dma_desc_ct == 0) { dma_desc_ct = 1; //default to 4k when max is not given } hal->dma_desc_num = dma_desc_ct; return hal->dma_desc_num * sizeof(spi_slave_hd_hal_desc_append_t); } void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len) { lldesc_setup_link(&hal->dmadesc_rx->desc, out_buf, len, true); spi_ll_dma_rx_fifo_reset(hal->dev); spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan); spi_ll_slave_reset(hal->dev); spi_ll_infifo_full_clr(hal->dev); spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7); spi_ll_dma_rx_enable(hal->dev, 1); spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, &hal->dmadesc_rx->desc); } void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len) { lldesc_setup_link(&hal->dmadesc_tx->desc, data, len, false); spi_ll_dma_tx_fifo_reset(hal->dev); spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan); spi_ll_slave_reset(hal->dev); spi_ll_outfifo_empty_clr(hal->dev); spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8); spi_ll_dma_tx_enable(hal->dev, 1); spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, &hal->dmadesc_tx->desc); } static spi_ll_intr_t get_event_intr(spi_slave_hd_hal_context_t *hal, spi_event_t ev) { spi_ll_intr_t intr = 0; #if CONFIG_IDF_TARGET_ESP32S2 //Append mode is only supported on ESP32S2 now if ((ev & SPI_EV_SEND) && hal->append_mode) intr |= SPI_LL_INTR_OUT_EOF; #endif if ((ev & SPI_EV_SEND) && !hal->append_mode) intr |= SPI_LL_INTR_CMD8; if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_CMD7; if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF; if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF; if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9; if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA; if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE; return intr; } bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev) { spi_ll_intr_t intr = get_event_intr(hal, ev); if (spi_ll_get_intr(hal->dev, intr)) { spi_ll_clear_intr(hal->dev, intr); return true; } return false; } bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev) { //The trans_done interrupt is used for the workaround when some interrupt is not writable spi_ll_intr_t intr = get_event_intr(hal, ev); // Workaround for these interrupts not writable uint32_t missing_intr = hal->intr_not_triggered & ev; if (missing_intr) { if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD7)) { hal->intr_not_triggered &= ~SPI_EV_RECV; } if ((missing_intr & SPI_EV_SEND) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD8)) { hal->intr_not_triggered &= ~SPI_EV_SEND; } if (spi_ll_get_intr(hal->dev, SPI_LL_INTR_TRANS_DONE)) { spi_ll_disable_intr(hal->dev, SPI_LL_INTR_TRANS_DONE); } } if (spi_ll_get_intr(hal->dev, intr)) { spi_ll_disable_intr(hal->dev, intr); return true; } return false; } void spi_slave_hd_hal_enable_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev) { spi_ll_intr_t intr = get_event_intr(hal, ev); spi_ll_enable_intr(hal->dev, intr); } void spi_slave_hd_hal_invoke_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev) { spi_ll_intr_t intr = get_event_intr(hal, ev); // Workaround for these interrupts not writable if (hal->intr_not_triggered & ev & (SPI_EV_RECV | SPI_EV_SEND)) { intr |= SPI_LL_INTR_TRANS_DONE; } spi_ll_enable_intr(hal->dev, intr); } void spi_slave_hd_hal_read_buffer(spi_slave_hd_hal_context_t *hal, int addr, uint8_t *out_data, size_t len) { spi_ll_read_buffer_byte(hal->dev, addr, out_data, len); } void spi_slave_hd_hal_write_buffer(spi_slave_hd_hal_context_t *hal, int addr, uint8_t *data, size_t len) { spi_ll_write_buffer_byte(hal->dev, addr, data, len); } int spi_slave_hd_hal_get_last_addr(spi_slave_hd_hal_context_t *hal) { return spi_ll_slave_hd_get_last_addr(hal->dev); } int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal) { //this is by -byte return spi_ll_slave_get_rx_byte_len(hal->dev); } int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal) { lldesc_t* desc = &hal->dmadesc_rx->desc; return lldesc_get_received_len(desc, NULL); } bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans) { if ((uint32_t)&hal->tx_dma_head->desc == spi_dma_ll_get_out_eof_desc_addr(hal->dma_out, hal->tx_dma_chan)) { return false; } hal->tx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->tx_dma_head->desc, qe); *out_trans = hal->tx_dma_head->arg; hal->tx_recycled_desc_cnt++; return true; } bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, size_t *out_len) { if ((uint32_t)&hal->rx_dma_head->desc == spi_dma_ll_get_in_suc_eof_desc_addr(hal->dma_in, hal->rx_dma_chan)) { return false; } hal->rx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->rx_dma_head->desc, qe); *out_trans = hal->rx_dma_head->arg; *out_len = hal->rx_dma_head->desc.length; hal->rx_recycled_desc_cnt++; return true; } #if CONFIG_IDF_TARGET_ESP32S2 //Append mode is only supported on ESP32S2 now static void spi_slave_hd_hal_link_append_desc(spi_slave_hd_hal_desc_append_t *dmadesc, const void *data, int len, bool isrx, void *arg) { HAL_ASSERT(len <= LLDESC_MAX_NUM_PER_DESC); //TODO: Add support for transaction with length larger than 4092, IDF-2660 int n = 0; while (len) { int dmachunklen = len; if (dmachunklen > LLDESC_MAX_NUM_PER_DESC) { dmachunklen = LLDESC_MAX_NUM_PER_DESC; } if (isrx) { //Receive needs DMA length rounded to next 32-bit boundary dmadesc[n].desc.size = (dmachunklen + 3) & (~3); dmadesc[n].desc.length = (dmachunklen + 3) & (~3); } else { dmadesc[n].desc.size = dmachunklen; dmadesc[n].desc.length = dmachunklen; } dmadesc[n].desc.buf = (uint8_t *)data; dmadesc[n].desc.eof = 0; dmadesc[n].desc.sosf = 0; dmadesc[n].desc.owner = 1; dmadesc[n].desc.qe.stqe_next = &dmadesc[n + 1].desc; dmadesc[n].arg = arg; len -= dmachunklen; data += dmachunklen; n++; } dmadesc[n - 1].desc.eof = 1; //Mark last DMA desc as end of stream. dmadesc[n - 1].desc.qe.stqe_next = NULL; } esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg) { //Check if there are enough available DMA descriptors for software to use int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC; int not_recycled_desc_num = hal->tx_used_desc_cnt - hal->tx_recycled_desc_cnt; int available_desc_num = hal->dma_desc_num - not_recycled_desc_num; if (num_required > available_desc_num) { return ESP_ERR_INVALID_STATE; } spi_slave_hd_hal_link_append_desc(hal->tx_cur_desc, data, len, false, arg); if (!hal->tx_dma_started) { hal->tx_dma_started = true; //start a link hal->tx_dma_tail = hal->tx_cur_desc; spi_ll_clear_intr(hal->dev, SPI_LL_INTR_OUT_EOF); spi_ll_dma_tx_fifo_reset(hal->dma_out); spi_ll_outfifo_empty_clr(hal->dev); spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan); spi_ll_dma_tx_enable(hal->dev, 1); spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, &hal->tx_cur_desc->desc); } else { //there is already a consecutive link STAILQ_NEXT(&hal->tx_dma_tail->desc, qe) = &hal->tx_cur_desc->desc; hal->tx_dma_tail = hal->tx_cur_desc; spi_dma_ll_tx_restart(hal->dma_out, hal->tx_dma_chan); } //Move the current descriptor pointer according to the number of the linked descriptors for (int i = 0; i < num_required; i++) { hal->tx_used_desc_cnt++; hal->tx_cur_desc++; if (hal->tx_cur_desc == hal->dmadesc_tx + hal->dma_desc_num) { hal->tx_cur_desc = hal->dmadesc_tx; } } return ESP_OK; } esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg) { //Check if there are enough available dma descriptors for software to use int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC; int not_recycled_desc_num = hal->rx_used_desc_cnt - hal->rx_recycled_desc_cnt; int available_desc_num = hal->dma_desc_num - not_recycled_desc_num; if (num_required > available_desc_num) { return ESP_ERR_INVALID_STATE; } spi_slave_hd_hal_link_append_desc(hal->rx_cur_desc, data, len, false, arg); if (!hal->rx_dma_started) { hal->rx_dma_started = true; //start a link hal->rx_dma_tail = hal->rx_cur_desc; spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7); spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan); spi_ll_dma_rx_fifo_reset(hal->dma_in); spi_ll_infifo_full_clr(hal->dev); spi_ll_dma_rx_enable(hal->dev, 1); spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, &hal->rx_cur_desc->desc); } else { //there is already a consecutive link STAILQ_NEXT(&hal->rx_dma_tail->desc, qe) = &hal->rx_cur_desc->desc; hal->rx_dma_tail = hal->rx_cur_desc; spi_dma_ll_rx_restart(hal->dma_in, hal->rx_dma_chan); } //Move the current descriptor pointer according to the number of the linked descriptors for (int i = 0; i < num_required; i++) { hal->rx_used_desc_cnt++; hal->rx_cur_desc++; if (hal->rx_cur_desc == hal->dmadesc_rx + hal->dma_desc_num) { hal->rx_cur_desc = hal->dmadesc_rx; } } return ESP_OK; } #endif //#if CONFIG_IDF_TARGET_ESP32S2