// Copyright 2016-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "sdkconfig.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "sys/lock.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "freertos/ringbuf.h" #include "esp32c3/rom/ets_sys.h" #include "driver/periph_ctrl.h" #include "driver/gpio.h" #include "driver/adc.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/dma_types.h" #include "esp_efuse_rtc_calib.h" #include "esp_private/gdma.h" #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s(%d)",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) static const char *ADC_TAG = "ADC"; #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s(%d) :%s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } \ }) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) /*--------------------------------------------------------------- Digital Controller Context ---------------------------------------------------------------*/ /** * 1. adc_digi_mutex: this mutex lock is used for ADC digital controller. On ESP32-C3, the ADC single read APIs (unit1 & unit2) * and ADC DMA continuous read APIs share the ``apb_saradc_struct.h`` regs. * * 2. sar_adc_mutex: this mutex lock is used for SARADC2 module. On ESP32C-C3, the ADC single read APIs (unit2), ADC DMA * continuous read APIs and WIFI share the SARADC2 analog IP. * * Sequence: * Acquire: 1. sar_adc_mutex; 2. adc_digi_mutex; * Release: 1. adc_digi_mutex; 2. sar_adc_mutex; */ static _lock_t adc_digi_mutex; #define ADC_DIGI_LOCK_ACQUIRE() _lock_acquire(&adc_digi_mutex) #define ADC_DIGI_LOCK_RELEASE() _lock_release(&adc_digi_mutex) static _lock_t sar_adc2_mutex; #define SAC_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_mutex) #define SAC_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_mutex) #define INTERNAL_BUF_NUM 5 #define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF typedef struct adc_digi_context_t { intr_handle_t dma_intr_hdl; //MD interrupt handle uint32_t bytes_between_intr; //bytes between in suc eof intr uint8_t *rx_dma_buf; //dma buffer adc_dma_hal_context_t hal_dma; //dma context (hal) adc_dma_hal_config_t hal_dma_config; //dma config (hal) gdma_channel_handle_t rx_dma_channel; //dma rx channel handle RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler bool ringbuf_overflow_flag; //1: ringbuffer overflow bool driver_start_flag; //1: driver is started; 0: driver is stoped bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used. bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not. adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation. adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation. adc_digi_config_t digi_controller_config; //Digital Controller Configuration } adc_digi_context_t; static adc_digi_context_t *s_adc_digi_ctx = NULL; static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten); /*--------------------------------------------------------------- ADC Continuous Read Mode (via DMA) ---------------------------------------------------------------*/ static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data); static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel) { return adc_channel_io_map[adc_unit][adc_channel]; } static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask) { esp_err_t ret = ESP_OK; uint64_t gpio_mask = 0; uint32_t n = 0; int8_t io = 0; while (channel_mask) { if (channel_mask & 0x1) { io = adc_digi_get_io_num(adc_unit, n); if (io < 0) { return ESP_ERR_INVALID_ARG; } gpio_mask |= BIT64(io); } channel_mask = channel_mask >> 1; n++; } gpio_config_t cfg = { .pin_bit_mask = gpio_mask, .mode = GPIO_MODE_DISABLE, }; ret = gpio_config(&cfg); return ret; } esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config) { esp_err_t ret = ESP_OK; s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t)); if (s_adc_digi_ctx == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } //ringbuffer s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF); if (!s_adc_digi_ctx->ringbuf_hdl) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc internal buffer used by DMA s_adc_digi_ctx->bytes_between_intr = init_config->conv_num_each_intr; s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, s_adc_digi_ctx->bytes_between_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL); if (!s_adc_digi_ctx->rx_dma_buf) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc dma descriptor s_adc_digi_ctx->hal_dma_config.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA); if (!s_adc_digi_ctx->hal_dma_config.rx_desc) { ret = ESP_ERR_NO_MEM; goto cleanup; } s_adc_digi_ctx->hal_dma_config.desc_max_num = INTERNAL_BUF_NUM; //malloc pattern table s_adc_digi_ctx->digi_controller_config.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_table_t)); if (!s_adc_digi_ctx->digi_controller_config.adc_pattern) { ret = ESP_ERR_NO_MEM; goto cleanup; } //init gpio pins if (init_config->adc1_chan_mask) { ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask); if (ret != ESP_OK) { goto cleanup; } } if (init_config->adc2_chan_mask) { ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask); if (ret != ESP_OK) { goto cleanup; } } //alloc rx gdma channel gdma_channel_alloc_config_t rx_alloc_config = { .direction = GDMA_CHANNEL_DIRECTION_RX, }; ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel); if (ret != ESP_OK) { goto cleanup; } gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0)); gdma_strategy_config_t strategy_config = { .auto_update_desc = true, .owner_check = true }; gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config); gdma_rx_event_callbacks_t cbs = { .on_recv_eof = adc_dma_in_suc_eof_callback }; gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx); int dma_chan; gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan); s_adc_digi_ctx->hal_dma_config.dma_chan = dma_chan; //enable SARADC module clock periph_module_enable(PERIPH_SARADC_MODULE); adc_hal_calibration_init(ADC_NUM_1); adc_hal_calibration_init(ADC_NUM_2); return ret; cleanup: adc_digi_deinitialize(); return ret; } static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx); static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { adc_digi_context_t *adc_digi_ctx = (adc_digi_context_t *)user_data; return adc_dma_intr(adc_digi_ctx); } static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx) { portBASE_TYPE taskAwoken = 0; BaseType_t ret; while (adc_digi_ctx->hal_dma_config.cur_desc_ptr->dw0.owner == 0) { dma_descriptor_t *current_desc = adc_digi_ctx->hal_dma_config.cur_desc_ptr; ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken); if (ret == pdFALSE) { //ringbuffer overflow adc_digi_ctx->ringbuf_overflow_flag = 1; } adc_digi_ctx->hal_dma_config.desc_cnt += 1; //cycle the dma descriptor and buffers adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.cur_desc_ptr->next; if (!adc_digi_ctx->hal_dma_config.cur_desc_ptr) { break; } } if (!adc_digi_ctx->hal_dma_config.cur_desc_ptr) { assert(adc_digi_ctx->hal_dma_config.desc_cnt == adc_digi_ctx->hal_dma_config.desc_max_num); //reset the current descriptor status adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.rx_desc; adc_digi_ctx->hal_dma_config.desc_cnt = 0; //start next turns of dma operation adc_hal_digi_dma_multi_descriptor(&adc_digi_ctx->hal_dma_config, adc_digi_ctx->rx_dma_buf, adc_digi_ctx->bytes_between_intr, adc_digi_ctx->hal_dma_config.desc_max_num); adc_hal_digi_rxdma_start(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config); } if(taskAwoken == pdTRUE) { return true; } else { return false; } } esp_err_t adc_digi_start(void) { if (s_adc_digi_ctx->driver_start_flag != 0) { ESP_LOGE(ADC_TAG, "The driver is already started"); return ESP_ERR_INVALID_STATE; } //reset flags s_adc_digi_ctx->ringbuf_overflow_flag = 0; s_adc_digi_ctx->driver_start_flag = 1; //When using SARADC2 module, this task needs to be protected from WIFI if (s_adc_digi_ctx->use_adc2) { SAC_ADC2_LOCK_ACQUIRE(); } ADC_DIGI_LOCK_ACQUIRE(); adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); if (s_adc_digi_ctx->use_adc1) { uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten); adc_hal_set_calibration_param(ADC_NUM_1, cal_val); } if (s_adc_digi_ctx->use_adc2) { uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten); adc_hal_set_calibration_param(ADC_NUM_2, cal_val); } adc_hal_init(); adc_hal_arbiter_config(&config); adc_hal_digi_init(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config); adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config); //create dma descriptors adc_hal_digi_dma_multi_descriptor(&s_adc_digi_ctx->hal_dma_config, s_adc_digi_ctx->rx_dma_buf, s_adc_digi_ctx->bytes_between_intr, s_adc_digi_ctx->hal_dma_config.desc_max_num); adc_hal_digi_set_eof_num(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, (s_adc_digi_ctx->bytes_between_intr)/4); //set the current descriptor pointer s_adc_digi_ctx->hal_dma_config.cur_desc_ptr = s_adc_digi_ctx->hal_dma_config.rx_desc; s_adc_digi_ctx->hal_dma_config.desc_cnt = 0; //enable in suc eof intr adc_hal_digi_ena_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT); //start ADC adc_hal_digi_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config); //start DMA adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config); return ESP_OK; } esp_err_t adc_digi_stop(void) { if (s_adc_digi_ctx->driver_start_flag != 1) { ESP_LOGE(ADC_TAG, "The driver is already stopped"); return ESP_ERR_INVALID_STATE; } s_adc_digi_ctx->driver_start_flag = 0; //disable the in suc eof intrrupt adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT); //clear the in suc eof interrupt adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT); //stop DMA adc_hal_digi_rxdma_stop(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config); //stop ADC adc_hal_digi_stop(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config); adc_hal_digi_deinit(); ADC_DIGI_LOCK_RELEASE(); //When using SARADC2 module, this task needs to be protected from WIFI if (s_adc_digi_ctx->use_adc2) { SAC_ADC2_LOCK_RELEASE(); } return ESP_OK; } esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms) { TickType_t ticks_to_wait; esp_err_t ret = ESP_OK; uint8_t *data = NULL; size_t size = 0; ticks_to_wait = timeout_ms / portTICK_RATE_MS; if (timeout_ms == ADC_MAX_DELAY) { ticks_to_wait = portMAX_DELAY; } data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max); if (!data) { ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr"); ret = ESP_ERR_TIMEOUT; *out_length = 0; return ret; } memcpy(buf, data, size); vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data); assert((size % 4) == 0); *out_length = size; if (s_adc_digi_ctx->ringbuf_overflow_flag) { ret = ESP_ERR_INVALID_STATE; } return ret; } esp_err_t adc_digi_deinitialize(void) { if (!s_adc_digi_ctx) { return ESP_ERR_INVALID_STATE; } if (s_adc_digi_ctx->driver_start_flag != 0) { ESP_LOGE(ADC_TAG, "The driver is not stopped"); return ESP_ERR_INVALID_STATE; } if (s_adc_digi_ctx->dma_intr_hdl) { esp_intr_free(s_adc_digi_ctx->dma_intr_hdl); } if(s_adc_digi_ctx->ringbuf_hdl) { vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl); s_adc_digi_ctx->ringbuf_hdl = NULL; } free(s_adc_digi_ctx->rx_dma_buf); free(s_adc_digi_ctx->hal_dma_config.rx_desc); free(s_adc_digi_ctx->digi_controller_config.adc_pattern); gdma_disconnect(s_adc_digi_ctx->rx_dma_channel); gdma_del_channel(s_adc_digi_ctx->rx_dma_channel); free(s_adc_digi_ctx); s_adc_digi_ctx = NULL; periph_module_disable(PERIPH_SARADC_MODULE); return ESP_OK; } /*--------------------------------------------------------------- ADC Single Read Mode ---------------------------------------------------------------*/ static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API esp_err_t adc1_config_width(adc_bits_width_t width_bit) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_NUM_1, channel); ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG); esp_err_t ret = ESP_OK; s_atten1_single[channel] = atten; ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel)); adc_hal_calibration_init(ADC_NUM_1); return ret; } int adc1_get_raw(adc1_channel_t channel) { int raw_out = 0; adc_digi_config_t dig_cfg = { .conv_limit_en = 0, .conv_limit_num = 250, .sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH, }; ADC_DIGI_LOCK_ACQUIRE(); periph_module_enable(PERIPH_SARADC_MODULE); adc_atten_t atten = s_atten1_single[channel]; uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten); adc_hal_set_calibration_param(ADC_NUM_1, cal_val); adc_hal_digi_controller_config(&dig_cfg); adc_hal_intr_clear(ADC_EVENT_ADC1_DONE); adc_hal_adc1_onetime_sample_enable(true); adc_hal_onetime_channel(ADC_NUM_1, channel); adc_hal_set_onetime_atten(atten); //Trigger single read. adc_hal_onetime_start(&dig_cfg); while (!adc_hal_intr_get_raw(ADC_EVENT_ADC1_DONE)); adc_hal_single_read(ADC_NUM_1, &raw_out); adc_hal_intr_clear(ADC_EVENT_ADC1_DONE); adc_hal_adc1_onetime_sample_enable(false); adc_hal_digi_deinit(); periph_module_disable(PERIPH_SARADC_MODULE); ADC_DIGI_LOCK_RELEASE(); return raw_out; } esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_NUM_2, channel); ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG); esp_err_t ret = ESP_OK; s_atten2_single[channel] = atten; ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel)); adc_hal_calibration_init(ADC_NUM_2); return ret; } esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; } esp_err_t ret = ESP_OK; adc_digi_config_t dig_cfg = { .conv_limit_en = 0, .conv_limit_num = 250, .sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH, }; SAC_ADC2_LOCK_ACQUIRE(); ADC_DIGI_LOCK_ACQUIRE(); periph_module_enable(PERIPH_SARADC_MODULE); adc_atten_t atten = s_atten2_single[channel]; uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten); adc_hal_set_calibration_param(ADC_NUM_2, cal_val); adc_hal_digi_controller_config(&dig_cfg); adc_hal_intr_clear(ADC_EVENT_ADC2_DONE); adc_hal_adc2_onetime_sample_enable(true); adc_hal_onetime_channel(ADC_NUM_2, channel); adc_hal_set_onetime_atten(atten); //Trigger single read. adc_hal_onetime_start(&dig_cfg); while (!adc_hal_intr_get_raw(ADC_EVENT_ADC2_DONE)); ret = adc_hal_single_read(ADC_NUM_2, raw_out); adc_hal_intr_clear(ADC_EVENT_ADC2_DONE); adc_hal_adc2_onetime_sample_enable(false); adc_hal_digi_deinit(); periph_module_disable(PERIPH_SARADC_MODULE); ADC_DIGI_LOCK_RELEASE(); SAC_ADC2_LOCK_RELEASE(); return ret; } /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config) { if (!s_adc_digi_ctx) { return ESP_ERR_INVALID_STATE; } ADC_CHECK(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, "ADC sampling frequency out of range", ESP_ERR_INVALID_ARG); s_adc_digi_ctx->digi_controller_config.conv_limit_en = config->conv_limit_en; s_adc_digi_ctx->digi_controller_config.conv_limit_num = config->conv_limit_num; s_adc_digi_ctx->digi_controller_config.adc_pattern_len = config->adc_pattern_len; s_adc_digi_ctx->digi_controller_config.sample_freq_hz = config->sample_freq_hz; memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t)); const int atten_uninitialised = 999; s_adc_digi_ctx->adc1_atten = atten_uninitialised; s_adc_digi_ctx->adc2_atten = atten_uninitialised; s_adc_digi_ctx->use_adc1 = 0; s_adc_digi_ctx->use_adc2 = 0; for (int i = 0; i < config->adc_pattern_len; i++) { const adc_digi_pattern_table_t* pat = &config->adc_pattern[i]; if (pat->unit == ADC_NUM_1) { s_adc_digi_ctx->use_adc1 = 1; if (s_adc_digi_ctx->adc1_atten == atten_uninitialised) { s_adc_digi_ctx->adc1_atten = pat->atten; } else if (s_adc_digi_ctx->adc1_atten != pat->atten) { return ESP_ERR_INVALID_ARG; } } else if (pat->unit == ADC_NUM_2) { //See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver s_adc_digi_ctx->use_adc2 = 1; if (s_adc_digi_ctx->adc2_atten == atten_uninitialised) { s_adc_digi_ctx->adc2_atten = pat->atten; } else if (s_adc_digi_ctx->adc2_atten != pat->atten) { return ESP_ERR_INVALID_ARG; } } } return ESP_OK; } esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config) { if (adc_unit & ADC_UNIT_1) { return ESP_ERR_NOT_SUPPORTED; } ADC_ENTER_CRITICAL(); adc_hal_arbiter_config(config); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * @brief Set ADC module controller. * There are five SAR ADC controllers: * Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes; * Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep; * the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2. * * @note Only ADC2 support arbiter to switch controllers automatically. Access to the ADC is based on the priority of the controller. * @note For ADC1, Controller access is mutually exclusive. * * @param adc_unit ADC unit. * @param ctrl ADC controller, Refer to `adc_controller_t`. * * @return * - ESP_OK Success */ esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_controller_t ctrl) { adc_arbiter_t config = {0}; adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT(); if (adc_unit & ADC_UNIT_1) { adc_hal_set_controller(ADC_NUM_1, ctrl); } if (adc_unit & ADC_UNIT_2) { adc_hal_set_controller(ADC_NUM_2, ctrl); switch (ctrl) { case ADC2_CTRL_FORCE_PWDET: config.pwdet_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC2_CTRL_PWDET); break; case ADC2_CTRL_FORCE_RTC: config.rtc_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC); break; case ADC2_CTRL_FORCE_DIG: config.dig_pri = 2; config.mode = ADC_ARB_MODE_SHIELD; adc_hal_arbiter_config(&config); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_DIG); break; default: adc_hal_arbiter_config(&cfg); break; } } return ESP_OK; } /** * @brief Reset FSM of adc digital controller. * * @return * - ESP_OK Success */ esp_err_t adc_digi_reset(void) { ADC_ENTER_CRITICAL(); adc_hal_digi_reset(); adc_hal_digi_clear_pattern_table(ADC_NUM_1); adc_hal_digi_clear_pattern_table(ADC_NUM_2); ADC_EXIT_CRITICAL(); return ESP_OK; } /*************************************/ /* Digital controller filter setting */ /*************************************/ esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_reset(idx); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_set_factor(idx, config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_get_factor(idx, config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_enable(idx, enable); ADC_EXIT_CRITICAL(); return ESP_OK; } /**************************************/ /* Digital controller monitor setting */ /**************************************/ esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config) { ADC_ENTER_CRITICAL(); adc_hal_digi_monitor_config(idx, config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); adc_hal_digi_monitor_enable(idx, enable); ADC_EXIT_CRITICAL(); return ESP_OK; } /**************************************/ /* Digital controller intr setting */ /**************************************/ esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_enable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_enable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_disable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_disable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_digi_intr_clear(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_hal_digi_intr_clear(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit) { uint32_t ret = 0; ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { ret = adc_hal_digi_get_intr_status(ADC_NUM_1); } if (adc_unit & ADC_UNIT_2) { ret = adc_hal_digi_get_intr_status(ADC_NUM_2); } ADC_EXIT_CRITICAL(); return ret; } static bool s_isr_registered = 0; static intr_handle_t s_adc_isr_handle = NULL; esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags) { ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG); ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL); esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 1; } return ret; } esp_err_t adc_digi_isr_deregister(void) { esp_err_t ret = ESP_FAIL; if (s_isr_registered) { ret = esp_intr_free(s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 0; } } return ret; } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ static uint16_t s_adc_cali_param[ADC_UNIT_MAX][ADC_ATTEN_MAX] = {}; //NOTE: according to calibration version, different types of lock may be taken during the process: // 1. Semaphore when reading efuse // 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future //This function shoudn't be called inside critical section or ISR static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { const bool no_cal = false; if (s_adc_cali_param[adc_n][atten]) { return (uint32_t)s_adc_cali_param[adc_n][atten]; } if (no_cal) { return 0; //indicating failure } // check if we can fetch the values from eFuse. int version = esp_efuse_rtc_calib_get_ver(); uint32_t init_code = 0; if (version == 1) { //for calibration v1, both ADC units use the same init code (calibrated by ADC1) init_code = esp_efuse_rtc_calib_get_init_code(version, atten); ESP_LOGD(ADC_TAG, "Calib(V%d) ADC0, 1 atten=%d: %04X", version, atten, init_code); s_adc_cali_param[0][atten] = init_code; s_adc_cali_param[1][atten] = init_code; } else { adc_power_acquire(); ADC_ENTER_CRITICAL(); const bool internal_gnd = true; init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd); ADC_EXIT_CRITICAL(); adc_power_release(); ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code); s_adc_cali_param[adc_n][atten] = init_code; } return init_code; } // Internal function to calibrate PWDET for WiFi esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { adc_hal_calibration_init(adc_n); uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten); ADC_ENTER_CRITICAL(); adc_hal_set_calibration_param(adc_n, cal_val); ADC_EXIT_CRITICAL(); return ESP_OK; }