#include #include #include "freertos/FreeRTOS.h" #include "freertos/event_groups.h" #include "esp_event.h" #include "unity.h" #include "esp_netif.h" #include "esp_eth.h" #include "sdkconfig.h" #include "lwip/sockets.h" #define TEST_ETH_TYPE 0x3300 #define TEST_CTRL_ETH_TYPE (TEST_ETH_TYPE + 1) #define WAIT_AFTER_CONN_MS 2500 #define WAIT_AFTER_CONN_TMO_MS 20000 #define ETH_START_BIT BIT(0) #define ETH_STOP_BIT BIT(1) #define ETH_CONNECT_BIT BIT(2) #define ETH_BROADCAST_RECV_BIT BIT(0) #define ETH_MULTICAST_RECV_BIT BIT(1) #define ETH_UNICAST_RECV_BIT BIT(2) #define ETH_POKE_RESP_RECV_BIT BIT(3) #define POKE_REQ 0xFA #define POKE_RESP 0xFB #define DUMMY_TRAFFIC 0xFF typedef struct { uint8_t dest[6]; uint8_t src[6]; uint16_t proto; uint8_t data[]; } __attribute__((__packed__)) emac_frame_t; typedef struct { EventGroupHandle_t eth_event_group; uint8_t dst_mac_addr[ETH_ADDR_LEN]; int unicast_rx_cnt; int multicast_rx_cnt; int brdcast_rx_cnt; bool check_rx_data; } recv_info_t; static void eth_event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data){ EventGroupHandle_t eth_event_group = (EventGroupHandle_t)arg; switch (event_id) { case ETHERNET_EVENT_CONNECTED: xEventGroupSetBits(eth_event_group, ETH_CONNECT_BIT); break; case ETHERNET_EVENT_DISCONNECTED: break; case ETHERNET_EVENT_START: xEventGroupSetBits(eth_event_group, ETH_START_BIT); break; case ETHERNET_EVENT_STOP: xEventGroupSetBits(eth_event_group, ETH_STOP_BIT); break; default: break; } } esp_err_t l2_packet_txrx_test_cb(esp_eth_handle_t hdl, uint8_t *buffer, uint32_t length, void *priv) { recv_info_t *recv_info = (recv_info_t*)priv; EventGroupHandle_t eth_event_group = recv_info->eth_event_group; emac_frame_t *pkt = (emac_frame_t *)buffer; // check header if (pkt->proto == ntohs(TEST_ETH_TYPE)) { // data packet uint8_t local_mac_addr[ETH_ADDR_LEN]; esp_eth_ioctl(hdl, ETH_CMD_G_MAC_ADDR, local_mac_addr); // check data content if (recv_info->check_rx_data) { if (length == 1024) { for (int i = 0; i < (length - ETH_HEADER_LEN); ++i) { if (pkt->data[i] != (i & 0xff)) { printf("payload mismatch\n"); free(buffer); return ESP_OK; } } } } if (memcmp(pkt->dest, "\xff\xff\xff\xff\xff\xff", ETH_ADDR_LEN) == 0) { recv_info->brdcast_rx_cnt++; xEventGroupSetBits(eth_event_group, ETH_BROADCAST_RECV_BIT); } else if (pkt->dest[0] & 0x1) { recv_info->multicast_rx_cnt++; xEventGroupSetBits(eth_event_group, ETH_MULTICAST_RECV_BIT); } else if (memcmp(pkt->dest, local_mac_addr, ETH_ADDR_LEN) == 0) { recv_info->unicast_rx_cnt++; xEventGroupSetBits(eth_event_group, ETH_UNICAST_RECV_BIT); } } else if (ntohs(pkt->proto) == TEST_CTRL_ETH_TYPE) { // control packet if (pkt->data[0] == POKE_RESP) { memcpy(recv_info->dst_mac_addr, pkt->dest, ETH_ADDR_LEN); printf("Poke response received\n"); xEventGroupSetBits(eth_event_group, ETH_POKE_RESP_RECV_BIT); } } free(buffer); return ESP_OK; } /** * @brief The function sends a "POKE" request message over the Ethernet and waits until the test script sends a reply. * Multiple "POKE" attempts are issued when timeout for the reply expires. * This function is used to drive the test flow and to ensure that data path between the test points * has been established. I.e. if DUT is connected in network with a switch, even if link is indicated up, * it may take some time the switch starts forwarding the associated port (e.g. it runs RSTP at first). */ void poke_and_wait(esp_eth_handle_t eth_handle, void *data, uint16_t size, EventGroupHandle_t eth_event_group) { // create a control frame to control test flow between the UT and the Python test script emac_frame_t *ctrl_pkt = calloc(1, 60); ctrl_pkt->proto = htons(TEST_CTRL_ETH_TYPE); memset(ctrl_pkt->dest, 0xff, ETH_ADDR_LEN); // broadcast addr esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, ctrl_pkt->src); ctrl_pkt->data[0] = POKE_REQ; if (data != NULL && size > 0) { memcpy(&ctrl_pkt->data[1], data, size); } uint32_t tmo; uint32_t i; for(tmo = 0, i = 1; tmo < WAIT_AFTER_CONN_TMO_MS; tmo += WAIT_AFTER_CONN_MS, i++) { printf("Poke attempt #%" PRIu32 "\n", i); TEST_ESP_OK(esp_eth_transmit(eth_handle, ctrl_pkt, 60)); EventBits_t bits = xEventGroupWaitBits(eth_event_group, ETH_POKE_RESP_RECV_BIT, true, true, pdMS_TO_TICKS(WAIT_AFTER_CONN_MS)); if ((bits & ETH_POKE_RESP_RECV_BIT) == ETH_POKE_RESP_RECV_BIT) { break; } } TEST_ASSERT(tmo < WAIT_AFTER_CONN_TMO_MS); free(ctrl_pkt); } TEST_CASE("ethernet_broadcast_transmit", "[esp_eth]") { eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default MAC configuration eth_esp32_emac_config_t esp32_emac_config = ETH_ESP32_EMAC_DEFAULT_CONFIG(); esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&esp32_emac_config, &mac_config); // create MAC instance TEST_ASSERT_NOT_NULL(mac); eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); // apply default PHY configuration #if defined(CONFIG_TARGET_ETH_PHY_DEVICE_IP101) esp_eth_phy_t *phy = esp_eth_phy_new_ip101(&phy_config); // create PHY instance #elif defined(CONFIG_TARGET_ETH_PHY_DEVICE_LAN87XX) esp_eth_phy_t *phy = esp_eth_phy_new_lan87xx(&phy_config); #endif TEST_ASSERT_NOT_NULL(phy); esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver TEST_ASSERT_EQUAL(ESP_OK, esp_eth_driver_install(&config, ð_handle)); // install driver TEST_ASSERT_NOT_NULL(eth_handle); TEST_ESP_OK(esp_event_loop_create_default()); EventGroupHandle_t eth_event_state_group = xEventGroupCreate(); TEST_ASSERT(eth_event_state_group != NULL); TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, ð_event_handler, eth_event_state_group)); EventGroupHandle_t eth_event_rx_group = xEventGroupCreate(); TEST_ASSERT(eth_event_rx_group != NULL); recv_info_t recv_info = { .eth_event_group = eth_event_rx_group, .check_rx_data = false, .unicast_rx_cnt = 0, .multicast_rx_cnt = 0, .brdcast_rx_cnt = 0 }; uint8_t local_mac_addr[ETH_ADDR_LEN] = {}; TEST_ESP_OK(mac->get_addr(mac, local_mac_addr)); // test app will parse the DUT MAC from this line of log output printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2], local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]); TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &recv_info)); TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine EventBits_t bits = 0; bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT); // if DUT is connected in network with switch: even if link is indicated up, it may take some time the switch // starts switching the associated port (e.g. it runs RSTP at first) poke_and_wait(eth_handle, NULL, 0, eth_event_rx_group); emac_frame_t *pkt = malloc(1024); pkt->proto = htons(TEST_ETH_TYPE); TEST_ESP_OK(esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, pkt->src)); memset(pkt->dest, 0xff, ETH_ADDR_LEN); // broadcast addr for (int i = 0; i < (1024 - ETH_HEADER_LEN); ++i){ pkt->data[i] = i & 0xff; } TEST_ESP_OK(esp_eth_transmit(eth_handle, pkt, 1024)); // give it some time to complete transmit vTaskDelay(pdMS_TO_TICKS(500)); free(pkt); TEST_ESP_OK(esp_eth_stop(eth_handle)); TEST_ESP_OK(esp_event_loop_delete_default()); TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle)); phy->del(phy); mac->del(mac); vEventGroupDelete(eth_event_rx_group); vEventGroupDelete(eth_event_state_group); } TEST_CASE("recv_pkt", "[esp_eth]") { eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default MAC configuration eth_esp32_emac_config_t esp32_emac_config = ETH_ESP32_EMAC_DEFAULT_CONFIG(); esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&esp32_emac_config, &mac_config); // create MAC instance TEST_ASSERT_NOT_NULL(mac); eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); // apply default PHY configuration #if defined(CONFIG_TARGET_ETH_PHY_DEVICE_IP101) esp_eth_phy_t *phy = esp_eth_phy_new_ip101(&phy_config); // create PHY instance #elif defined(CONFIG_TARGET_ETH_PHY_DEVICE_LAN87XX) esp_eth_phy_t *phy = esp_eth_phy_new_lan87xx(&phy_config); #endif TEST_ASSERT_NOT_NULL(phy); esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver TEST_ASSERT_EQUAL(ESP_OK, esp_eth_driver_install(&config, ð_handle)); // install driver TEST_ASSERT_NOT_NULL(eth_handle); TEST_ESP_OK(esp_event_loop_create_default()); EventGroupHandle_t eth_event_state_group = xEventGroupCreate(); TEST_ASSERT(eth_event_state_group != NULL); TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, ð_event_handler, eth_event_state_group)); EventGroupHandle_t eth_event_rx_group = xEventGroupCreate(); TEST_ASSERT(eth_event_rx_group != NULL); recv_info_t recv_info = { .eth_event_group = eth_event_rx_group, .check_rx_data = true, .unicast_rx_cnt = 0, .multicast_rx_cnt = 0, .brdcast_rx_cnt = 0 }; uint8_t local_mac_addr[ETH_ADDR_LEN] = {}; TEST_ESP_OK(mac->get_addr(mac, local_mac_addr)); // test app will parse the DUT MAC from this line of log output printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2], local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]); TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &recv_info)); TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine EventBits_t bits = 0; bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT); // if DUT is connected in network with switch: even if link is indicated up, it may take some time the switch // starts switching the associated port (e.g. it runs RSTP at first) poke_and_wait(eth_handle, NULL, 0, eth_event_rx_group); bits = 0; bits = xEventGroupWaitBits(eth_event_rx_group, ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT, true, true, pdMS_TO_TICKS(5000)); printf("bits = 0x%" PRIu32 "\n", (uint32_t)bits & (ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT)); TEST_ASSERT((bits & (ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT)) == (ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT)); TEST_ESP_OK(esp_eth_stop(eth_handle)); TEST_ESP_OK(esp_event_loop_delete_default()); TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle)); phy->del(phy); mac->del(mac); vEventGroupDelete(eth_event_state_group); vEventGroupDelete(eth_event_rx_group); } TEST_CASE("start_stop_stress_test", "[esp_eth]") { eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default MAC configuration eth_esp32_emac_config_t esp32_emac_config = ETH_ESP32_EMAC_DEFAULT_CONFIG(); esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&esp32_emac_config, &mac_config); // create MAC instance TEST_ASSERT_NOT_NULL(mac); eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); // apply default PHY configuration #if defined(CONFIG_TARGET_ETH_PHY_DEVICE_IP101) esp_eth_phy_t *phy = esp_eth_phy_new_ip101(&phy_config); // create PHY instance #elif defined(CONFIG_TARGET_ETH_PHY_DEVICE_LAN87XX) esp_eth_phy_t *phy = esp_eth_phy_new_lan87xx(&phy_config); #endif TEST_ASSERT_NOT_NULL(phy); esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver TEST_ASSERT_EQUAL(ESP_OK, esp_eth_driver_install(&config, ð_handle)); // install driver TEST_ASSERT_NOT_NULL(eth_handle); TEST_ESP_OK(esp_event_loop_create_default()); EventBits_t bits = 0; EventGroupHandle_t eth_event_state_group = xEventGroupCreate(); TEST_ASSERT(eth_event_state_group != NULL); TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, ð_event_handler, eth_event_state_group)); EventGroupHandle_t eth_event_rx_group = xEventGroupCreate(); TEST_ASSERT(eth_event_rx_group != NULL); recv_info_t recv_info = { .eth_event_group = eth_event_rx_group, .check_rx_data = false, .unicast_rx_cnt = 0, .multicast_rx_cnt = 0, .brdcast_rx_cnt = 0 }; uint8_t local_mac_addr[ETH_ADDR_LEN] = {}; TEST_ESP_OK(mac->get_addr(mac, local_mac_addr)); // test app will parse the DUT MAC from this line of log output printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2], local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]); TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &recv_info)); // create dummy data packet used for traffic generation emac_frame_t *pkt = calloc(1, 1500); pkt->proto = htons(TEST_ETH_TYPE); memcpy(pkt->dest, recv_info.dst_mac_addr, ETH_ADDR_LEN); memcpy(pkt->src, local_mac_addr, ETH_ADDR_LEN); printf("EMAC start/stop stress test under heavy Tx traffic\n"); for (int tx_i = 0; tx_i < 10; tx_i++) { printf("Tx Test iteration %d\n", tx_i); TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT); // at first, check that Tx/Rx path works as expected by poking the test script // this also serves as main PASS/FAIL criteria poke_and_wait(eth_handle, &tx_i, sizeof(tx_i), eth_event_rx_group); // generate heavy Tx traffic printf("Note: transmit errors are expected...\n"); for (int j = 0; j < 150; j++) { // return value is not checked on purpose since it is expected that it may fail time to time because // we may try to queue more packets than hardware is able to handle pkt->data[2] = j & 0xFF; // sequence number esp_eth_transmit(eth_handle, pkt, 1500); } TEST_ESP_OK(esp_eth_stop(eth_handle)); bits = xEventGroupWaitBits(eth_event_state_group, ETH_STOP_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_STOP_BIT) == ETH_STOP_BIT); printf("Ethernet stopped\n"); } printf("EMAC start/stop stress test under heavy Rx traffic\n"); for (int rx_i = 0; rx_i < 10; rx_i++) { printf("Rx Test iteration %d\n", rx_i); TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT); poke_and_wait(eth_handle, &rx_i, sizeof(rx_i), eth_event_rx_group); // wait for dummy traffic xEventGroupClearBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT); recv_info.unicast_rx_cnt = 0; bits = xEventGroupWaitBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_UNICAST_RECV_BIT) == ETH_UNICAST_RECV_BIT); vTaskDelay(pdMS_TO_TICKS(500)); TEST_ESP_OK(esp_eth_stop(eth_handle)); bits = xEventGroupWaitBits(eth_event_state_group, ETH_STOP_BIT, true, true, pdMS_TO_TICKS(3000)); TEST_ASSERT((bits & ETH_STOP_BIT) == ETH_STOP_BIT); printf("Recv packets: %d\n", recv_info.unicast_rx_cnt); TEST_ASSERT_GREATER_THAN_INT32(0, recv_info.unicast_rx_cnt); printf("Ethernet stopped\n"); } free(pkt); // Add an extra delay to be sure that there is no traffic generated by the test script during the driver un-installation. // It was observed unintended behavior of the switch used in test environment when link is set down under heavy load. vTaskDelay(pdMS_TO_TICKS(500)); TEST_ESP_OK(esp_event_handler_unregister(ETH_EVENT, ESP_EVENT_ANY_ID, eth_event_handler)); TEST_ESP_OK(esp_event_loop_delete_default()); TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle)); phy->del(phy); mac->del(mac); vEventGroupDelete(eth_event_rx_group); vEventGroupDelete(eth_event_state_group); } void app_main(void) { unity_run_menu(); }