/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_chip_info.h" #include "esp_efuse.h" #include "esp_private/cache_err_int.h" #include "esp_clk_internal.h" #include "esp_rom_efuse.h" #include "esp_rom_uart.h" #include "esp_rom_sys.h" #include "esp_rom_caps.h" #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32 #include "soc/dport_reg.h" #include "esp32/rtc.h" #include "esp32/rom/cache.h" #include "esp32/rom/secure_boot.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rtc.h" #include "esp32s2/rom/cache.h" #include "esp32s2/rom/secure_boot.h" #include "esp32s2/memprot.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rtc.h" #include "esp32s3/rom/cache.h" #include "esp32s3/rom/secure_boot.h" #include "esp_memprot.h" #include "soc/assist_debug_reg.h" #include "soc/system_reg.h" #include "esp32s3/rom/opi_flash.h" #include "hal/cache_hal.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rtc.h" #include "esp32c3/rom/cache.h" #include "esp32c3/rom/secure_boot.h" #include "esp_memprot.h" #elif CONFIG_IDF_TARGET_ESP32C6 #include "esp32c6/rtc.h" #include "esp32c6/rom/cache.h" #include "esp_memprot.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rtc.h" #include "esp32h2/rom/cache.h" #include "esp_memprot.h" #elif CONFIG_IDF_TARGET_ESP32C2 #include "esp32c2/rtc.h" #include "esp32c2/rom/cache.h" #include "esp32c2/rom/rtc.h" #include "esp32c2/rom/secure_boot.h" #elif CONFIG_IDF_TARGET_ESP32P4 #include "esp32p4/rtc.h" #include "soc/hp_sys_clkrst_reg.h" #include "soc/interrupt_core0_reg.h" #include "soc/interrupt_core1_reg.h" #endif #include "esp_private/esp_mmu_map_private.h" #if CONFIG_SPIRAM #include "esp_psram.h" #include "esp_private/mmu_psram_flash.h" #include "esp_private/esp_psram_extram.h" #endif #include "esp_private/spi_flash_os.h" #include "esp_private/mspi_timing_tuning.h" #include "bootloader_flash_config.h" #include "bootloader_flash.h" #include "esp_private/crosscore_int.h" #include "esp_flash_encrypt.h" #include "esp_private/sleep_gpio.h" #include "hal/wdt_hal.h" #include "soc/rtc.h" #include "hal/cache_ll.h" #include "hal/efuse_ll.h" #include "soc/periph_defs.h" #include "esp_cpu.h" #include "esp_private/esp_clk.h" #include "spi_flash_mmap.h" #if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX #include "esp_private/trax.h" #endif #include "bootloader_mem.h" #if CONFIG_APP_BUILD_TYPE_RAM #include "esp_rom_spiflash.h" #include "bootloader_init.h" #include "esp_private/bootloader_flash_internal.h" #endif // CONFIG_APP_BUILD_TYPE_RAM //This dependency will be removed in the future #include "soc/ext_mem_defs.h" #include "esp_private/startup_internal.h" #include "esp_private/system_internal.h" extern int _bss_start; extern int _bss_end; extern int _rtc_bss_start; extern int _rtc_bss_end; #if CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED extern int _bss_bt_start; extern int _bss_bt_end; #endif // CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED extern int _instruction_reserved_start; extern int _instruction_reserved_end; extern int _rodata_reserved_start; extern int _rodata_reserved_end; extern int _vector_table; #if SOC_INT_CLIC_SUPPORTED extern int _mtvt_table; #endif static const char *TAG = "cpu_start"; #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY extern int _ext_ram_bss_start; extern int _ext_ram_bss_end; #endif #ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY extern int _iram_bss_start; extern int _iram_bss_end; #endif #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE static volatile bool s_cpu_up[SOC_CPU_CORES_NUM] = { false }; static volatile bool s_cpu_inited[SOC_CPU_CORES_NUM] = { false }; static volatile bool s_resume_cores; #endif static void core_intr_matrix_clear(void) { uint32_t core_id = esp_cpu_get_core_id(); for (int i = 0; i < ETS_MAX_INTR_SOURCE; i++) { #if CONFIG_IDF_TARGET_ESP32P4 if (core_id == 0) { REG_WRITE(INTERRUPT_CORE0_LP_RTC_INT_MAP_REG + 4 * i, ETS_INVALID_INUM); } else { REG_WRITE(INTERRUPT_CORE1_LP_RTC_INT_MAP_REG + 4 * i, ETS_INVALID_INUM); } #else esp_rom_route_intr_matrix(core_id, i, ETS_INVALID_INUM); #endif // CONFIG_IDF_TARGET_ESP32P4 } #if SOC_INT_CLIC_SUPPORTED for (int i = 0; i < 32; i++) { /* Set all the CPU interrupt lines to vectored by default, as it is on other RISC-V targets */ esprv_intc_int_set_vectored(i, true); } #endif // SOC_INT_CLIC_SUPPORTED } #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE void startup_resume_other_cores(void) { s_resume_cores = true; } void IRAM_ATTR call_start_cpu1(void) { #ifdef __riscv // Configure the global pointer register // (This should be the first thing IDF app does, as any other piece of code could be // relaxed by the linker to access something relative to __global_pointer$) __asm__ __volatile__ ( ".option push\n" ".option norelax\n" "la gp, __global_pointer$\n" ".option pop" ); #endif //#ifdef __riscv #if SOC_BRANCH_PREDICTOR_SUPPORTED esp_cpu_branch_prediction_enable(); #endif //#if SOC_BRANCH_PREDICTOR_SUPPORTED esp_cpu_intr_set_ivt_addr(&_vector_table); #if SOC_INT_CLIC_SUPPORTED /* When hardware vectored interrupts are enabled in CLIC, * the CPU jumps to this base address + 4 * interrupt_id. */ esp_cpu_intr_set_mtvt_addr(&_mtvt_table); #endif ets_set_appcpu_boot_addr(0); bootloader_init_mem(); #if CONFIG_ESP_CONSOLE_NONE esp_rom_install_channel_putc(1, NULL); esp_rom_install_channel_putc(2, NULL); #else // CONFIG_ESP_CONSOLE_NONE esp_rom_install_uart_printf(); esp_rom_uart_set_as_console(CONFIG_ESP_CONSOLE_UART_NUM); #endif #if CONFIG_IDF_TARGET_ESP32 DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE); DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE); #elif CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7688 #else REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_PDEBUGENABLE_REG, 1); REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_RECORDING_REG, 1); #endif s_cpu_up[1] = true; ESP_EARLY_LOGD(TAG, "App cpu up"); // Clear interrupt matrix for APP CPU core core_intr_matrix_clear(); #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP //Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler //has started, but it isn't active *on this CPU* yet. esp_cache_err_int_init(); #endif #if (CONFIG_IDF_TARGET_ESP32 && CONFIG_ESP32_TRAX_TWOBANKS) || \ (CONFIG_IDF_TARGET_ESP32S3 && CONFIG_ESP32S3_TRAX_TWOBANKS) trax_start_trace(TRAX_DOWNCOUNT_WORDS); #endif s_cpu_inited[1] = true; while (!s_resume_cores) { esp_rom_delay_us(100); } SYS_STARTUP_FN(); } static void start_other_core(void) { esp_chip_info_t chip_info; esp_chip_info(&chip_info); // If not the single core variant of a target - check this since there is // no separate soc_caps.h for the single core variant. if (!(chip_info.cores > 1)) { ESP_EARLY_LOGE(TAG, "Running on single core variant of a chip, but app is built with multi-core support."); ESP_EARLY_LOGE(TAG, "Check that CONFIG_FREERTOS_UNICORE is enabled in menuconfig"); abort(); } ESP_EARLY_LOGD(TAG, "Starting app cpu, entry point is %p", call_start_cpu1); #if CONFIG_IDF_TARGET_ESP32 && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP Cache_Flush(1); Cache_Read_Enable(1); #endif // #if CONFIG_IDF_TARGET_ESP32 && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP esp_cpu_unstall(1); // Enable clock and reset APP CPU. Note that OpenOCD may have already // enabled clock and taken APP CPU out of reset. In this case don't reset // APP CPU again, as that will clear the breakpoints which may have already // been set. #if CONFIG_IDF_TARGET_ESP32 if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) { DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN); DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL); DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING); DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING); } #elif CONFIG_IDF_TARGET_ESP32S3 if (!REG_GET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN)) { REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN); REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL); REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING); REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING); } #elif CONFIG_IDF_TARGET_ESP32P4 if (!REG_GET_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_CORE1_CPU_CLK_EN)) { REG_SET_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_CORE1_CPU_CLK_EN); } if(REG_GET_BIT(HP_SYS_CLKRST_HP_RST_EN0_REG, HP_SYS_CLKRST_REG_RST_EN_CORE1_GLOBAL)){ REG_CLR_BIT(HP_SYS_CLKRST_HP_RST_EN0_REG, HP_SYS_CLKRST_REG_RST_EN_CORE1_GLOBAL); } #endif ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1); bool cpus_up = false; while (!cpus_up) { cpus_up = true; for (int i = 0; i < SOC_CPU_CORES_NUM; i++) { cpus_up &= s_cpu_up[i]; } esp_rom_delay_us(100); } } #if !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE // This function is needed to make the multicore app runnable on a unicore bootloader (built with FREERTOS UNICORE). // It does some cache settings for other CPUs. void IRAM_ATTR do_multicore_settings(void) { // We intentionally do not check the cache settings before changing them, // because it helps to get the application to run on older bootloaders. #ifdef CONFIG_IDF_TARGET_ESP32 if (!efuse_ll_get_disable_app_cpu()) { Cache_Read_Disable(1); Cache_Flush(1); DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); // We do not enable cache for CPU1 now because it will be done later in start_other_core(). } #endif cache_bus_mask_t cache_bus_mask_core0 = cache_ll_l1_get_enabled_bus(0); #ifndef CONFIG_IDF_TARGET_ESP32 // 1. disable the cache before changing its settings. cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL); #endif for (unsigned core = 1; core < SOC_CPU_CORES_NUM; core++) { // 2. change cache settings. All cores must have the same settings. cache_ll_l1_enable_bus(core, cache_bus_mask_core0); } #ifndef CONFIG_IDF_TARGET_ESP32 // 3. enable the cache after changing its settings. cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL); #endif } #endif // !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE /* * We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized, * and the app CPU is in reset. We do have a stack, so we can do the initialization in C. */ void IRAM_ATTR call_start_cpu0(void) { #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE soc_reset_reason_t rst_reas[SOC_CPU_CORES_NUM]; #else soc_reset_reason_t __attribute__((unused)) rst_reas[1]; #endif #ifdef __riscv if (esp_cpu_dbgr_is_attached()) { /* Let debugger some time to detect that target started, halt it, enable ebreaks and resume. 500ms should be enough. */ for (uint32_t ms_num = 0; ms_num < 2; ms_num++) { esp_rom_delay_us(100000); } } // Configure the global pointer register // (This should be the first thing IDF app does, as any other piece of code could be // relaxed by the linker to access something relative to __global_pointer$) __asm__ __volatile__ ( ".option push\n" ".option norelax\n" "la gp, __global_pointer$\n" ".option pop" ); #endif #if SOC_BRANCH_PREDICTOR_SUPPORTED esp_cpu_branch_prediction_enable(); #endif // Move exception vectors to IRAM esp_cpu_intr_set_ivt_addr(&_vector_table); #if SOC_INT_CLIC_SUPPORTED /* When hardware vectored interrupts are enabled in CLIC, * the CPU jumps to this base address + 4 * interrupt_id. */ esp_cpu_intr_set_mtvt_addr(&_mtvt_table); #endif rst_reas[0] = esp_rom_get_reset_reason(0); #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE rst_reas[1] = esp_rom_get_reset_reason(1); #endif //Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this. memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start)); #if CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED // Clear Bluetooth bss memset(&_bss_bt_start, 0, (&_bss_bt_end - &_bss_bt_start) * sizeof(_bss_bt_start)); #endif // CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED #if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY) // Clear IRAM BSS memset(&_iram_bss_start, 0, (&_iram_bss_end - &_iram_bss_start) * sizeof(_iram_bss_start)); #endif #if SOC_RTC_FAST_MEM_SUPPORTED || SOC_RTC_SLOW_MEM_SUPPORTED /* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */ if (rst_reas[0] != RESET_REASON_CORE_DEEP_SLEEP) { memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start)); } #endif #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP #if CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE ESP_EARLY_LOGI(TAG, "Unicore app"); #else ESP_EARLY_LOGI(TAG, "Multicore app"); #if !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE // It helps to fix missed cache settings for other cores. It happens when bootloader is unicore. do_multicore_settings(); #endif // !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #endif #endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP // When the APP is loaded into ram for execution, some hardware initialization behaviors // in the bootloader are still necessary #if CONFIG_APP_BUILD_TYPE_RAM bootloader_init(); #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP bootloader_flash_hardware_init(); #endif //#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP #endif //#if CONFIG_APP_BUILD_TYPE_RAM #ifndef CONFIG_BOOTLOADER_WDT_ENABLE // from panic handler we can be reset by RWDT or TG0WDT if (rst_reas[0] == RESET_REASON_CORE_RTC_WDT || rst_reas[0] == RESET_REASON_CORE_MWDT0 #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE || rst_reas[1] == RESET_REASON_CORE_RTC_WDT || rst_reas[1] == RESET_REASON_CORE_MWDT0 #endif ) { wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT(); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_disable(&rtc_wdt_ctx); wdt_hal_write_protect_enable(&rtc_wdt_ctx); } #endif #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP #if CONFIG_IDF_TARGET_ESP32S2 /* Configure the mode of instruction cache : cache size, cache associated ways, cache line size. */ extern void esp_config_instruction_cache_mode(void); esp_config_instruction_cache_mode(); /* If we need use SPIRAM, we should use data cache, or if we want to access rodata, we also should use data cache. Configure the mode of data : cache size, cache associated ways, cache line size. Enable data cache, so if we don't use SPIRAM, it just works. */ extern void esp_config_data_cache_mode(void); esp_config_data_cache_mode(); Cache_Enable_DCache(0); #endif #if CONFIG_IDF_TARGET_ESP32S3 /* Configure the mode of instruction cache : cache size, cache line size. */ extern void rom_config_instruction_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size); rom_config_instruction_cache_mode(CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE, CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE); /* If we need use SPIRAM, we should use data cache. Configure the mode of data : cache size, cache line size.*/ Cache_Suspend_DCache(); extern void rom_config_data_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size); rom_config_data_cache_mode(CONFIG_ESP32S3_DATA_CACHE_SIZE, CONFIG_ESP32S3_DCACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_DATA_CACHE_LINE_SIZE); Cache_Resume_DCache(0); #endif // CONFIG_IDF_TARGET_ESP32S3 #if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-5670, add cache init API extern void esp_config_l2_cache_mode(void); esp_config_l2_cache_mode(); #endif if (esp_efuse_check_errors() != ESP_OK) { esp_restart(); } #if ESP_ROM_NEEDS_SET_CACHE_MMU_SIZE #if CONFIG_APP_BUILD_TYPE_ELF_RAM // For RAM loadable ELF case, we don't need to reserve IROM/DROM as instructions and data // are all in internal RAM. If the RAM loadable ELF has any requirement to memory map the // external flash then it should use flash or partition mmap APIs. uint32_t cache_mmu_irom_size = 0; __attribute__((unused)) uint32_t cache_mmu_drom_size = 0; #else // CONFIG_APP_BUILD_TYPE_ELF_RAM uint32_t _instruction_size = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start; uint32_t cache_mmu_irom_size = ((_instruction_size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE) * sizeof(uint32_t); uint32_t _rodata_size = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start; __attribute__((unused)) uint32_t cache_mmu_drom_size = ((_rodata_size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE) * sizeof(uint32_t); #endif // !CONFIG_APP_BUILD_TYPE_ELF_RAM /* Configure the Cache MMU size for instruction and rodata in flash. */ Cache_Set_IDROM_MMU_Size(cache_mmu_irom_size, CACHE_DROM_MMU_MAX_END - cache_mmu_irom_size); #endif // ESP_ROM_NEEDS_SET_CACHE_MMU_SIZE #if CONFIG_ESPTOOLPY_OCT_FLASH && !CONFIG_ESPTOOLPY_FLASH_MODE_AUTO_DETECT bool efuse_opflash_en = efuse_ll_get_flash_type(); if (!efuse_opflash_en) { ESP_EARLY_LOGE(TAG, "Octal Flash option selected, but EFUSE not configured!"); abort(); } #endif esp_mspi_pin_init(); // For Octal flash, it's hard to implement a read_id function in OPI mode for all vendors. // So we have to read it here in SPI mode, before entering the OPI mode. bootloader_flash_update_id(); /** * This function initialise the Flash chip to the user-defined settings. * * In bootloader, we only init Flash (and MSPI) to a preliminary state, for being flexible to * different chips. * In this stage, we re-configure the Flash (and MSPI) to required configuration */ spi_flash_init_chip_state(); #if SOC_MEMSPI_SRC_FREQ_120M mspi_timing_flash_tuning(); #endif esp_mmu_map_init(); #if CONFIG_SPIRAM_BOOT_INIT if (esp_psram_init() != ESP_OK) { #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY ESP_EARLY_LOGE(TAG, "Failed to init external RAM, needed for external .bss segment"); abort(); #endif #if CONFIG_SPIRAM_IGNORE_NOTFOUND ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it."); #else ESP_EARLY_LOGE(TAG, "Failed to init external RAM!"); abort(); #endif } #endif #endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP bootloader_init_mem(); #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE s_cpu_up[0] = true; #endif ESP_EARLY_LOGD(TAG, "Pro cpu up"); #if SOC_CPU_CORES_NUM > 1 // there is no 'single-core mode' for natively single-core processors #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE start_other_core(); #else ESP_EARLY_LOGI(TAG, "Single core mode"); #if CONFIG_IDF_TARGET_ESP32 DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN); // stop the other core #elif CONFIG_IDF_TARGET_ESP32S3 REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN); #if SOC_APPCPU_HAS_CLOCK_GATING_BUG /* The clock gating signal of the App core is invalid. We use RUNSTALL and RESETING signals to ensure that the App core stops running in single-core mode. */ REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL); REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING); #endif #endif // CONFIG_IDF_TARGET_ESP32 #endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE #endif // SOC_CPU_CORES_NUM > 1 #if CONFIG_SPIRAM_MEMTEST if (esp_psram_is_initialized()) { bool ext_ram_ok = esp_psram_extram_test(); if (!ext_ram_ok) { ESP_EARLY_LOGE(TAG, "External RAM failed memory test!"); abort(); } } #endif //CONFIG_SPIRAM_MEMTEST #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP //TODO: IDF-5023, replace with MMU driver #if CONFIG_IDF_TARGET_ESP32S3 int s_instr_flash2spiram_off = 0; int s_rodata_flash2spiram_off = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS s_instr_flash2spiram_off = instruction_flash2spiram_offset(); #endif #if CONFIG_SPIRAM_RODATA s_rodata_flash2spiram_off = rodata_flash2spiram_offset(); #endif Cache_Set_IDROM_MMU_Info(cache_mmu_irom_size / sizeof(uint32_t), \ cache_mmu_drom_size / sizeof(uint32_t), \ (uint32_t)&_rodata_reserved_start, \ (uint32_t)&_rodata_reserved_end, \ s_instr_flash2spiram_off, \ s_rodata_flash2spiram_off); #endif // CONFIG_IDF_TARGET_ESP32S3 #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S2_DATA_CACHE_WRAP || \ CONFIG_ESP32S3_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S3_DATA_CACHE_WRAP uint32_t icache_wrap_enable = 0, dcache_wrap_enable = 0; #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S3_INSTRUCTION_CACHE_WRAP icache_wrap_enable = 1; #endif #if CONFIG_ESP32S2_DATA_CACHE_WRAP || CONFIG_ESP32S3_DATA_CACHE_WRAP dcache_wrap_enable = 1; #endif extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable); esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable); #endif #if CONFIG_ESP32S3_DATA_CACHE_16KB Cache_Invalidate_DCache_All(); Cache_Occupy_Addr(SOC_DROM_LOW, 0x4000); #endif #if CONFIG_IDF_TARGET_ESP32C2 // TODO : IDF-5020 #if CONFIG_ESP32C2_INSTRUCTION_CACHE_WRAP extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable); esp_enable_cache_wrap(1); #endif #endif #endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start)); #endif //Enable trace memory and immediately start trace. #if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3 #if CONFIG_ESP32_TRAX_TWOBANKS || CONFIG_ESP32S3_TRAX_TWOBANKS trax_enable(TRAX_ENA_PRO_APP); #else trax_enable(TRAX_ENA_PRO); #endif #elif CONFIG_IDF_TARGET_ESP32S2 trax_enable(TRAX_ENA_PRO); #endif trax_start_trace(TRAX_DOWNCOUNT_WORDS); #endif // CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX esp_clk_init(); esp_perip_clk_init(); // Now that the clocks have been set-up, set the startup time from RTC // and default RTC-backed system time provider. g_startup_time = esp_rtc_get_time_us(); // Clear interrupt matrix for PRO CPU core core_intr_matrix_clear(); #ifndef CONFIG_IDF_ENV_FPGA // TODO: on FPGA it should be possible to configure this, not currently working with APB_CLK_FREQ changed #ifdef CONFIG_ESP_CONSOLE_UART uint32_t clock_hz = esp_clk_apb_freq(); #if ESP_ROM_UART_CLK_IS_XTAL clock_hz = esp_clk_xtal_freq(); // From esp32-s3 on, UART clock source is selected to XTAL in ROM #endif esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM); // In a single thread mode, the freertos is not started yet. So don't have to use a critical section. int __DECLARE_RCC_ATOMIC_ENV __attribute__ ((unused)); // To avoid build errors about spinlock's __DECLARE_RCC_ATOMIC_ENV esp_rom_uart_set_clock_baudrate(CONFIG_ESP_CONSOLE_UART_NUM, clock_hz, CONFIG_ESP_CONSOLE_UART_BAUDRATE); #endif #endif #if !CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7529 // Need to unhold the IOs that were hold right before entering deep sleep, which are used as wakeup pins if (rst_reas[0] == RESET_REASON_CORE_DEEP_SLEEP) { esp_deep_sleep_wakeup_io_reset(); } #endif //#if !CONFIG_IDF_TARGET_ESP32P4 #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP esp_cache_err_int_init(); #endif #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && !CONFIG_ESP_SYSTEM_MEMPROT_TEST // Memprot cannot be locked during OS startup as the lock-on prevents any PMS changes until a next reboot // If such a situation appears, it is likely an malicious attempt to bypass the system safety setup -> print error & reset #if CONFIG_IDF_TARGET_ESP32S2 if (esp_memprot_is_locked_any()) { #else bool is_locked = false; if (esp_mprot_is_conf_locked_any(&is_locked) != ESP_OK || is_locked) { #endif ESP_EARLY_LOGE(TAG, "Memprot feature locked after the system reset! Potential safety corruption, rebooting."); esp_restart_noos(); } //default configuration of PMS Memprot esp_err_t memp_err = ESP_OK; #if CONFIG_IDF_TARGET_ESP32S2 //specific for ESP32S2 unless IDF-3024 is merged #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK memp_err = esp_memprot_set_prot(PANIC_HNDL_ON, MEMPROT_LOCK, NULL); #else memp_err = esp_memprot_set_prot(PANIC_HNDL_ON, MEMPROT_UNLOCK, NULL); #endif #else //CONFIG_IDF_TARGET_ESP32S2 specific end esp_memp_config_t memp_cfg = ESP_MEMPROT_DEFAULT_CONFIG(); #if !CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK memp_cfg.lock_feature = false; #endif memp_err = esp_mprot_set_prot(&memp_cfg); #endif //other IDF_TARGETS end if (memp_err != ESP_OK) { ESP_EARLY_LOGE(TAG, "Failed to set Memprot feature (0x%08X: %s), rebooting.", memp_err, esp_err_to_name(memp_err)); esp_restart_noos(); } #endif //CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && !CONFIG_ESP_SYSTEM_MEMPROT_TEST #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP // External devices (including SPI0/1, cache) should be initialized #if !CONFIG_APP_BUILD_TYPE_RAM // Normal startup flow. We arrive here with the help of 1st, 2nd bootloader. There are valid headers (app/bootloader) // Read the application binary image header. This will also decrypt the header if the image is encrypted. __attribute__((unused)) esp_image_header_t fhdr = {0}; // This assumes that DROM is the first segment in the application binary, i.e. that we can read // the binary header through cache by accessing SOC_DROM_LOW address. hal_memcpy(&fhdr, (void *) SOC_DROM_LOW, sizeof(fhdr)); #if CONFIG_IDF_TARGET_ESP32 #if !CONFIG_SPIRAM_BOOT_INIT // If psram is uninitialized, we need to improve some flash configuration. bootloader_flash_clock_config(&fhdr); bootloader_flash_gpio_config(&fhdr); bootloader_flash_dummy_config(&fhdr); bootloader_flash_cs_timing_config(); #endif //!CONFIG_SPIRAM_BOOT_INIT #endif //CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPI_FLASH_SIZE_OVERRIDE int app_flash_size = esp_image_get_flash_size(fhdr.spi_size); if (app_flash_size < 1 * 1024 * 1024) { ESP_EARLY_LOGE(TAG, "Invalid flash size in app image header."); abort(); } bootloader_flash_update_size(app_flash_size); #endif //CONFIG_SPI_FLASH_SIZE_OVERRIDE #else // CONFIG_APP_BUILD_TYPE_RAM && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP bootloader_flash_unlock(); #endif #endif //!CONFIG_APP_BUILD_TYPE_PURE_RAM_APP #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE s_cpu_inited[0] = true; volatile bool cpus_inited = false; while (!cpus_inited) { cpus_inited = true; for (int i = 0; i < SOC_CPU_CORES_NUM; i++) { cpus_inited &= s_cpu_inited[i]; } esp_rom_delay_us(100); } #endif SYS_STARTUP_FN(); }