/* * SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /** * This file is a target specific for DAC DMA peripheral * Target: ESP32-S2 * DAC DMA peripheral (data source): SPI3 (i.e. use SPI DMA to transmit data) * DAC DMA interrupt source: SPI3 * DAC digital controller clock source: DIG_SARADC_CLK (root clock: APB or APLL) */ #include "sdkconfig.h" #include "esp_private/spi_common_internal.h" #include "esp_private/periph_ctrl.h" #include "esp_private/adc_share_hw_ctrl.h" #include "hal/spi_ll.h" #include "hal/dac_ll.h" #include "hal/adc_ll.h" #include "soc/lldesc.h" #include "soc/soc.h" #include "soc/soc_caps.h" #include "../dac_priv_dma.h" #include "clk_ctrl_os.h" #if CONFIG_DAC_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "esp_check.h" #include "esp_attr.h" #define DAC_DMA_PERIPH_SPI_HOST SPI3_HOST typedef struct { void *periph_dev; /* DMA peripheral device address */ uint32_t dma_chan; intr_handle_t intr_handle; /* Interrupt handle */ bool use_apll; /* Whether use APLL as digital controller clock source */ } dac_dma_periph_spi_t; static dac_dma_periph_spi_t *s_ddp = NULL; // Static DAC DMA peripheral structure pointer static const char *TAG = "DAC_DMA"; static uint32_t s_dac_set_apll_freq(uint32_t expt_freq) { /* Set APLL coefficients to the given frequency */ uint32_t real_freq = 0; esp_err_t ret = periph_rtc_apll_freq_set(expt_freq, &real_freq); if (ret == ESP_ERR_INVALID_ARG) { return 0; } if (ret == ESP_ERR_INVALID_STATE) { ESP_LOGW(TAG, "APLL is occupied already, it is working at %"PRIu32" Hz", real_freq); } ESP_LOGD(TAG, "APLL expected frequency is %"PRIu32" Hz, real frequency is %"PRIu32" Hz", expt_freq, real_freq); return real_freq; } /** * @brief Calculate and set DAC data frequency * @note DAC clock shares clock divider with ADC, the clock source is APB or APLL on ESP32-S2 * freq_hz = (source_clk / (clk_div + (b / a) + 1)) / interval * interval range: 1~4095 * @param freq_hz DAC byte transmit frequency * @return * - ESP_OK config success * - ESP_ERR_INVALID_ARG invalid frequency */ static esp_err_t s_dac_dma_periph_set_clock(uint32_t freq_hz, bool is_apll){ /* Step 1: Determine the digital clock source frequency */ uint32_t digi_ctrl_freq; // Digital controller clock if (is_apll) { /* Theoretical frequency range (due to the limitation of DAC, the maximum frequency may not reach): * SOC_APLL_MAX_HZ: 119.24 Hz ~ 67.5 MHz * SOC_APLL_MIN_HZ: 5.06 Hz ~ 2.65 MHz */ digi_ctrl_freq = s_dac_set_apll_freq(freq_hz < 120 ? SOC_APLL_MIN_HZ :SOC_APLL_MAX_HZ); ESP_RETURN_ON_FALSE(digi_ctrl_freq, ESP_ERR_INVALID_ARG, TAG, "set APLL coefficients failed"); } else { digi_ctrl_freq = APB_CLK_FREQ; } /* Step 2: Determine the interval */ uint32_t total_div = digi_ctrl_freq / freq_hz; uint32_t interval; /* For the case that smaller than the minimum ADC controller division, the required frequency is too big */ ESP_RETURN_ON_FALSE(total_div >= 2, ESP_ERR_INVALID_ARG, TAG, "the DAC frequency is too big"); if (total_div < 256) { // For the case that smaller than the maximum ADC controller division /* Fix the interval to 1, the division is fully realized by the ADC controller clock divider */ interval = 1; } else if (total_div < 8192) { // for the case that smaller than the maximum interval /* Set the interval to 'total_div / 2', fix the integer part of ADC controller clock division to 2 */ interval = total_div / 2; } else { /* Fix the interval to 4095, */ interval = 4095; } ESP_RETURN_ON_FALSE(interval * 256 > total_div, ESP_ERR_INVALID_ARG, TAG, "the DAC frequency is too small"); /* Step 3: Calculate the coefficients of ADC digital controller divider*/ uint32_t fsclk = interval * freq_hz; /* The clock frequency that produced by ADC controller divider */ uint32_t clk_div = digi_ctrl_freq / fsclk; uint32_t mod = digi_ctrl_freq % fsclk; uint32_t a = 0; uint32_t b = 1; if (mod == 0) { goto finish; } uint32_t min_diff = mod + 1; for (uint32_t tmp_b = 1; tmp_b < 64; tmp_b++) { uint32_t tmp_a = (uint32_t)(((mod * b) / (float)fsclk) + 0.5); uint32_t diff = (uint32_t)abs((int)(mod * tmp_b) - (int)(fsclk * tmp_a)); if (diff == 0) { a = tmp_a; b = tmp_b; goto finish; } if (diff < min_diff) { min_diff = diff; a = tmp_a; b = tmp_b; } } finish: /* Step 4: Set the clock coefficients */ dac_ll_digi_clk_inv(true); dac_ll_digi_set_trigger_interval(interval); // secondary clock division adc_ll_digi_controller_clk_div(clk_div - 1, b, a); adc_ll_digi_clk_sel(is_apll ? ADC_DIGI_CLK_SRC_APLL : ADC_DIGI_CLK_SRC_DEFAULT); return ESP_OK; } esp_err_t dac_dma_periph_init(uint32_t freq_hz, bool is_alternate, bool is_apll) { #if CONFIG_DAC_ENABLE_DEBUG_LOG esp_log_level_set(TAG, ESP_LOG_DEBUG); #endif esp_err_t ret = ESP_OK; /* Acquire DMA peripheral */ ESP_RETURN_ON_FALSE(spicommon_periph_claim(DAC_DMA_PERIPH_SPI_HOST, "dac_dma"), ESP_ERR_NOT_FOUND, TAG, "Failed to acquire DAC DMA peripheral"); adc_apb_periph_claim(); /* Allocate DAC DMA peripheral object */ s_ddp = (dac_dma_periph_spi_t *)heap_caps_calloc(1, sizeof(dac_dma_periph_spi_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); ESP_GOTO_ON_FALSE(s_ddp, ESP_ERR_NO_MEM, err, TAG, "No memory for DAC DMA object"); s_ddp->periph_dev = (void *)SPI_LL_GET_HW(DAC_DMA_PERIPH_SPI_HOST); if (is_apll) { periph_rtc_apll_acquire(); s_ddp->use_apll = true; } /* When transmit alternately, twice frequency is needed to guarantee the convert frequency in one channel */ uint32_t trans_freq_hz = freq_hz * (is_alternate ? 2 : 1); ESP_GOTO_ON_ERROR(s_dac_dma_periph_set_clock(trans_freq_hz, is_apll), err, TAG, "Failed to set clock of DMA peripheral"); ESP_GOTO_ON_ERROR(spicommon_dma_chan_alloc(DAC_DMA_PERIPH_SPI_HOST, SPI_DMA_CH_AUTO, &s_ddp->dma_chan, &s_ddp->dma_chan), err, TAG, "Failed to allocate dma peripheral channel"); spi_ll_enable_intr(s_ddp->periph_dev, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_OUT_TOTAL_EOF); dac_ll_digi_set_convert_mode(is_alternate); return ret; err: dac_dma_periph_deinit(); return ret; } esp_err_t dac_dma_periph_deinit(void) { ESP_RETURN_ON_FALSE(s_ddp->intr_handle == NULL, ESP_ERR_INVALID_STATE, TAG, "The interrupt is not deregistered yet"); if (s_ddp->dma_chan) { ESP_RETURN_ON_ERROR(spicommon_dma_chan_free(DAC_DMA_PERIPH_SPI_HOST), TAG, "Failed to free dma peripheral channel"); } ESP_RETURN_ON_FALSE(spicommon_periph_free(DAC_DMA_PERIPH_SPI_HOST), ESP_FAIL, TAG, "Failed to release DAC DMA peripheral"); spi_ll_disable_intr(s_ddp->periph_dev, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_OUT_TOTAL_EOF); adc_apb_periph_free(); if (s_ddp) { if (s_ddp->use_apll) { periph_rtc_apll_release(); s_ddp->use_apll = false; } free(s_ddp); s_ddp = NULL; } return ESP_OK; } int dac_dma_periph_get_intr_signal(void) { return spicommon_irqdma_source_for_host(DAC_DMA_PERIPH_SPI_HOST); } static void s_dac_dma_periph_reset(void) { spi_dma_ll_tx_reset(s_ddp->periph_dev, s_ddp->dma_chan); spi_ll_dma_tx_fifo_reset(s_ddp->periph_dev); } void dac_dma_periph_enable(void) { s_dac_dma_periph_reset(); dac_ll_digi_trigger_output(true); } void dac_dma_periph_disable(void) { s_dac_dma_periph_reset(); spi_dma_ll_tx_stop(s_ddp->periph_dev, s_ddp->dma_chan); dac_ll_digi_trigger_output(false); } uint32_t IRAM_ATTR dac_dma_periph_intr_is_triggered(void) { uint32_t ret = 0; ret |= spi_ll_get_intr(s_ddp->periph_dev, SPI_LL_INTR_OUT_EOF) ? DAC_DMA_EOF_INTR : 0; ret |= spi_ll_get_intr(s_ddp->periph_dev, SPI_LL_INTR_OUT_TOTAL_EOF) ? DAC_DMA_TEOF_INTR : 0; spi_ll_clear_intr(s_ddp->periph_dev, SPI_LL_INTR_OUT_EOF); spi_ll_clear_intr(s_ddp->periph_dev, SPI_LL_INTR_OUT_TOTAL_EOF); return ret; } uint32_t IRAM_ATTR dac_dma_periph_intr_get_eof_desc(void) { return spi_dma_ll_get_out_eof_desc_addr(s_ddp->periph_dev, s_ddp->dma_chan); } void dac_dma_periph_dma_trans_start(uint32_t desc_addr) { spi_dma_ll_tx_reset(s_ddp->periph_dev, s_ddp->dma_chan); spi_ll_dma_tx_fifo_reset(s_ddp->periph_dev); spi_dma_ll_tx_start(s_ddp->periph_dev, s_ddp->dma_chan, (lldesc_t *)desc_addr); }