/* * SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 OR MIT */ #include #include #include "sdkconfig.h" #include "esp_log.h" #include "esp_cpu.h" #include "esp_app_trace_membufs_proto.h" /** Trace data header. Every user data chunk is prepended with this header. * User allocates block with esp_apptrace_buffer_get and then fills it with data, * in multithreading environment it can happen that tasks gets buffer and then gets interrupted, * so it is possible that user data are incomplete when memory block is exposed to the host. * In this case host SW will see that wr_sz < block_sz and will report error. */ typedef struct { #if CONFIG_APPTRACE_SV_ENABLE uint8_t block_sz; // size of allocated block for user data uint8_t wr_sz; // size of actually written data #else uint16_t block_sz; // size of allocated block for user data uint16_t wr_sz; // size of actually written data #endif } esp_tracedata_hdr_t; /** TODO: docs */ typedef struct { uint16_t block_sz; // size of allocated block for user data } esp_hostdata_hdr_t; #if CONFIG_APPTRACE_SV_ENABLE #define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) (0) #define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (_v_) #define ESP_APPTRACE_USR_DATA_LEN_MAX(_hw_data_) 255UL #else #define ESP_APPTRACE_USR_BLOCK_CORE(_cid_) ((_cid_) << 15) #define ESP_APPTRACE_USR_BLOCK_LEN(_v_) (~(1 << 15) & (_v_)) #define ESP_APPTRACE_USR_DATA_LEN_MAX(_hw_data_) (ESP_APPTRACE_INBLOCK(_hw_data_)->sz - sizeof(esp_tracedata_hdr_t)) #endif #define ESP_APPTRACE_USR_BLOCK_RAW_SZ(_s_) ((_s_) + sizeof(esp_tracedata_hdr_t)) #define ESP_APPTRACE_INBLOCK_MARKER(_hw_data_) ((_hw_data_)->state.markers[(_hw_data_)->state.in_block % 2]) #define ESP_APPTRACE_INBLOCK_MARKER_UPD(_hw_data_, _v_) do {(_hw_data_)->state.markers[(_hw_data_)->state.in_block % 2] += (_v_);}while(0) #define ESP_APPTRACE_INBLOCK(_hw_data_) (&(_hw_data_)->blocks[(_hw_data_)->state.in_block % 2]) const static char *TAG = "esp_apptrace"; static uint32_t esp_apptrace_membufs_down_buffer_write_nolock(esp_apptrace_membufs_proto_data_t *proto, uint8_t *data, uint32_t size); esp_err_t esp_apptrace_membufs_init(esp_apptrace_membufs_proto_data_t *proto, const esp_apptrace_mem_block_t blocks_cfg[2]) { // disabled by default esp_apptrace_rb_init(&proto->rb_down, NULL, 0); // membufs proto init for (unsigned i = 0; i < 2; i++) { proto->blocks[i].start = blocks_cfg[i].start; proto->blocks[i].sz = blocks_cfg[i].sz; proto->state.markers[i] = 0; } proto->state.in_block = 0; #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 esp_apptrace_rb_init(&proto->rb_pend, proto->pending_data, sizeof(proto->pending_data)); #endif return ESP_OK; } void esp_apptrace_membufs_down_buffer_config(esp_apptrace_membufs_proto_data_t *data, uint8_t *buf, uint32_t size) { esp_apptrace_rb_init(&data->rb_down, buf, size); } // assumed to be protected by caller from multi-core/thread access static esp_err_t esp_apptrace_membufs_swap(esp_apptrace_membufs_proto_data_t *proto) { int prev_block_num = proto->state.in_block % 2; int new_block_num = prev_block_num ? (0) : (1); esp_err_t res = ESP_OK; res = proto->hw->swap_start(proto->state.in_block); if (res != ESP_OK) { return res; } proto->state.markers[new_block_num] = 0; // switch to new block proto->state.in_block++; proto->hw->swap(new_block_num); // handle data from host esp_hostdata_hdr_t *hdr = (esp_hostdata_hdr_t *)proto->blocks[new_block_num].start; // ESP_APPTRACE_LOGV("Host data %d, sz %d @ %p", proto->hw->host_data_pending(), hdr->block_sz, hdr); if (proto->hw->host_data_pending() && hdr->block_sz > 0) { // TODO: add support for multiple blocks from host, currently there is no need for that uint8_t *p = proto->blocks[new_block_num].start + proto->blocks[new_block_num].sz; ESP_APPTRACE_LOGD("Recvd %d bytes from host (@ 0x%x) [%x %x %x %x %x %x %x %x .. %x %x %x %x %x %x %x %x]", hdr->block_sz, proto->blocks[new_block_num].start, *(proto->blocks[new_block_num].start+0), *(proto->blocks[new_block_num].start+1), *(proto->blocks[new_block_num].start+2), *(proto->blocks[new_block_num].start+3), *(proto->blocks[new_block_num].start+4), *(proto->blocks[new_block_num].start+5), *(proto->blocks[new_block_num].start+6), *(proto->blocks[new_block_num].start+7), *(p-8), *(p-7), *(p-6), *(p-5), *(p-4), *(p-3), *(p-2), *(p-1)); uint32_t sz = esp_apptrace_membufs_down_buffer_write_nolock(proto, (uint8_t *)(hdr+1), hdr->block_sz); if (sz != hdr->block_sz) { ESP_APPTRACE_LOGE("Failed to write %d bytes to down buffer (%d %d)!", hdr->block_sz - sz, hdr->block_sz, sz); } hdr->block_sz = 0; } #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 // copy pending data to block if any while (proto->state.markers[new_block_num] < proto->blocks[new_block_num].sz) { uint32_t read_sz = esp_apptrace_rb_read_size_get(&proto->rb_pend); if (read_sz == 0) { break; // no more data in pending buffer } if (read_sz > proto->blocks[new_block_num].sz - proto->state.markers[new_block_num]) { read_sz = proto->blocks[new_block_num].sz - proto->state.markers[new_block_num]; } uint8_t *ptr = esp_apptrace_rb_consume(&proto->rb_pend, read_sz); if (!ptr) { assert(false && "Failed to consume pended bytes!!"); break; } ESP_APPTRACE_LOGD("Pump %d pend bytes [%x %x %x %x : %x %x %x %x : %x %x %x %x : %x %x...%x %x]", read_sz, *(ptr+0), *(ptr+1), *(ptr+2), *(ptr+3), *(ptr+4), *(ptr+5), *(ptr+6), *(ptr+7), *(ptr+8), *(ptr+9), *(ptr+10), *(ptr+11), *(ptr+12), *(ptr+13), *(ptr+read_sz-2), *(ptr+read_sz-1)); memcpy(proto->blocks[new_block_num].start + proto->state.markers[new_block_num], ptr, read_sz); proto->state.markers[new_block_num] += read_sz; } #endif proto->hw->swap_end(proto->state.in_block, proto->state.markers[prev_block_num]); return res; } static esp_err_t esp_apptrace_membufs_swap_waitus(esp_apptrace_membufs_proto_data_t *proto, esp_apptrace_tmo_t *tmo) { int res; while ((res = esp_apptrace_membufs_swap(proto)) != ESP_OK) { res = esp_apptrace_tmo_check(tmo); if (res != ESP_OK) { break; } } return res; } uint8_t *esp_apptrace_membufs_down_buffer_get(esp_apptrace_membufs_proto_data_t *proto, uint32_t *size, esp_apptrace_tmo_t *tmo) { uint8_t *ptr = NULL; while (1) { uint32_t sz = esp_apptrace_rb_read_size_get(&proto->rb_down); if (sz != 0) { *size = MIN(*size, sz); ptr = esp_apptrace_rb_consume(&proto->rb_down, *size); if (!ptr) { assert(false && "Failed to consume bytes from down buffer!"); } break; } // may need to flush if (proto->hw->host_data_pending()) { ESP_APPTRACE_LOGD("force flush"); int res = esp_apptrace_membufs_swap_waitus(proto, tmo); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to switch to another block to recv data from host!"); /*do not return error because data can be in down buffer already*/ } } else { // check tmo only if there is no data from host int res = esp_apptrace_tmo_check(tmo); if (res != ESP_OK) { return NULL; } } } return ptr; } esp_err_t esp_apptrace_membufs_down_buffer_put(esp_apptrace_membufs_proto_data_t *proto, uint8_t *ptr, esp_apptrace_tmo_t *tmo) { /* nothing todo */ return ESP_OK; } static uint32_t esp_apptrace_membufs_down_buffer_write_nolock(esp_apptrace_membufs_proto_data_t *proto, uint8_t *data, uint32_t size) { uint32_t total_sz = 0; while (total_sz < size) { ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock WRS %d-%d-%d %d", proto->rb_down.wr, proto->rb_down.rd, proto->rb_down.cur_size, size); uint32_t wr_sz = esp_apptrace_rb_write_size_get(&proto->rb_down); if (wr_sz == 0) { break; } if (wr_sz > size - total_sz) { wr_sz = size - total_sz; } ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d", wr_sz); uint8_t *ptr = esp_apptrace_rb_produce(&proto->rb_down, wr_sz); if (!ptr) { assert(false && "Failed to produce bytes to down buffer!"); } ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d to 0x%x from 0x%x", wr_sz, ptr, data + total_sz + wr_sz); memcpy(ptr, data + total_sz, wr_sz); total_sz += wr_sz; ESP_APPTRACE_LOGD("esp_apptrace_trax_down_buffer_write_nolock wr %d/%d", wr_sz, total_sz); } return total_sz; } static inline uint8_t *esp_apptrace_membufs_wait4buf(esp_apptrace_membufs_proto_data_t *proto, uint16_t size, esp_apptrace_tmo_t *tmo, int *pended) { uint8_t *ptr = NULL; int res = esp_apptrace_membufs_swap_waitus(proto, tmo); if (res != ESP_OK) { return NULL; } #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 // check if we still have pending data if (esp_apptrace_rb_read_size_get(&proto->rb_pend) > 0) { // if after block switch we still have pending data (not all pending data have been pumped to block) // alloc new pending buffer *pended = 1; ptr = esp_apptrace_rb_produce(&proto->rb_pend, size); if (!ptr) { ESP_APPTRACE_LOGE("Failed to alloc pend buf 1: w-r-s %d-%d-%d!", proto->rb_pend.wr, proto->rb_pend.rd, proto->rb_pend.cur_size); } } else #endif { // update block pointers if (ESP_APPTRACE_INBLOCK_MARKER(proto) + size > ESP_APPTRACE_INBLOCK(proto)->sz) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 *pended = 1; ptr = esp_apptrace_rb_produce(&proto->rb_pend, size); if (ptr == NULL) { ESP_APPTRACE_LOGE("Failed to alloc pend buf 2: w-r-s %d-%d-%d!", proto->rb_pend.wr, proto->rb_pend.rd, proto->rb_pend.cur_size); } #endif } else { *pended = 0; ptr = ESP_APPTRACE_INBLOCK(proto)->start + ESP_APPTRACE_INBLOCK_MARKER(proto); } } return ptr; } static inline uint8_t *esp_apptrace_membufs_pkt_start(uint8_t *ptr, uint16_t size) { // it is safe to use esp_cpu_get_core_id() in macro call because arg is used only once inside it ((esp_tracedata_hdr_t *)ptr)->block_sz = ESP_APPTRACE_USR_BLOCK_CORE(esp_cpu_get_core_id()) | size; ((esp_tracedata_hdr_t *)ptr)->wr_sz = 0; return ptr + sizeof(esp_tracedata_hdr_t); } static inline void esp_apptrace_membufs_pkt_end(uint8_t *ptr) { esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t)); // update written size hdr->wr_sz = hdr->block_sz; } uint8_t *esp_apptrace_membufs_up_buffer_get(esp_apptrace_membufs_proto_data_t *proto, uint32_t size, esp_apptrace_tmo_t *tmo) { uint8_t *buf_ptr = NULL; if (size > ESP_APPTRACE_USR_DATA_LEN_MAX(proto)) { ESP_APPTRACE_LOGE("Too large user data size %d!", size); return NULL; } // check for data in the pending buffer #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 if (esp_apptrace_rb_read_size_get(&proto->rb_pend) > 0) { // if we have buffered data try to switch block esp_apptrace_membufs_swap(proto); // if switch was successful, part or all pended data have been copied to block } if (esp_apptrace_rb_read_size_get(&proto->rb_pend) > 0) { // if we have buffered data alloc new pending buffer ESP_APPTRACE_LOGD("Get %d bytes from PEND buffer", size); buf_ptr = esp_apptrace_rb_produce(&proto->rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); if (buf_ptr == NULL) { int pended_buf; buf_ptr = esp_apptrace_membufs_wait4buf(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf); if (buf_ptr && !pended_buf) { ESP_APPTRACE_LOGD("Get %d bytes from block", size); // update cur block marker ESP_APPTRACE_INBLOCK_MARKER_UPD(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); } } } else { #else if (1) { #endif if (ESP_APPTRACE_INBLOCK_MARKER(proto) + ESP_APPTRACE_USR_BLOCK_RAW_SZ(size) > ESP_APPTRACE_INBLOCK(proto)->sz) { #if CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX > 0 ESP_APPTRACE_LOGD("Block full. Get %d bytes from PEND buffer", size); buf_ptr = esp_apptrace_rb_produce(&proto->rb_pend, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); #endif if (buf_ptr == NULL) { int pended_buf; ESP_APPTRACE_LOGD(" full. Get %d bytes from pend buffer", size); buf_ptr = esp_apptrace_membufs_wait4buf(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size), tmo, &pended_buf); if (buf_ptr && !pended_buf) { ESP_APPTRACE_LOGD("Got %d bytes from block", size); // update cur block marker ESP_APPTRACE_INBLOCK_MARKER_UPD(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); } } } else { ESP_APPTRACE_LOGD("Get %d bytes from buffer", size); // fit to curr nlock buf_ptr = ESP_APPTRACE_INBLOCK(proto)->start + ESP_APPTRACE_INBLOCK_MARKER(proto); // update cur block marker ESP_APPTRACE_INBLOCK_MARKER_UPD(proto, ESP_APPTRACE_USR_BLOCK_RAW_SZ(size)); } } if (buf_ptr) { buf_ptr = esp_apptrace_membufs_pkt_start(buf_ptr, size); } return buf_ptr; } esp_err_t esp_apptrace_membufs_up_buffer_put(esp_apptrace_membufs_proto_data_t *proto, uint8_t *ptr, esp_apptrace_tmo_t *tmo) { esp_apptrace_membufs_pkt_end(ptr); // TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written // TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to // higher prio tasks and the latter can not allocate buffers at all // this is abnormal situation can be detected on host which will receive only uncompleted buffers // workaround: use own memcpy which will kick-off dead tracing calls return ESP_OK; } esp_err_t esp_apptrace_membufs_flush_nolock(esp_apptrace_membufs_proto_data_t *proto, uint32_t min_sz, esp_apptrace_tmo_t *tmo) { int res = ESP_OK; if (ESP_APPTRACE_INBLOCK_MARKER(proto) < min_sz) { ESP_APPTRACE_LOGI("Ignore flush request for min %d bytes. Bytes in block: %d.", min_sz, ESP_APPTRACE_INBLOCK_MARKER(proto)); return ESP_OK; } // switch block while size of data (including that in pending buffer) is more than min size while (ESP_APPTRACE_INBLOCK_MARKER(proto) > min_sz) { ESP_APPTRACE_LOGD("Try to flush %d bytes. Wait until block switch for %lld us", ESP_APPTRACE_INBLOCK_MARKER(proto), tmo->tmo); res = esp_apptrace_membufs_swap_waitus(proto, tmo); if (res != ESP_OK) { if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE) ESP_APPTRACE_LOGW("Failed to switch to another block in %lld us!", tmo->tmo); else ESP_APPTRACE_LOGE("Failed to switch to another block in %lld us!", tmo->tmo); return res; } } return res; }