/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #if CONFIG_MCPWM_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "freertos/FreeRTOS.h" #include "esp_attr.h" #include "esp_check.h" #include "esp_err.h" #include "esp_log.h" #include "esp_memory_utils.h" #include "soc/soc_caps.h" #include "soc/mcpwm_periph.h" #include "hal/mcpwm_ll.h" #include "driver/mcpwm_timer.h" #include "esp_private/mcpwm.h" #include "mcpwm_private.h" static const char *TAG = "mcpwm"; static void mcpwm_timer_default_isr(void *args); static esp_err_t mcpwm_timer_register_to_group(mcpwm_timer_t *timer, int group_id) { mcpwm_group_t *group = mcpwm_acquire_group_handle(group_id); ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", group_id); int timer_id = -1; portENTER_CRITICAL(&group->spinlock); for (int i = 0; i < SOC_MCPWM_TIMERS_PER_GROUP; i++) { if (!group->timers[i]) { timer_id = i; group->timers[i] = timer; break; } } portEXIT_CRITICAL(&group->spinlock); if (timer_id < 0) { mcpwm_release_group_handle(group); group = NULL; } else { timer->group = group; timer->timer_id = timer_id; } ESP_RETURN_ON_FALSE(timer_id >= 0, ESP_ERR_NOT_FOUND, TAG, "no free timer in group (%d)", group_id); return ESP_OK; } static void mcpwm_timer_unregister_from_group(mcpwm_timer_t *timer) { mcpwm_group_t *group = timer->group; int timer_id = timer->timer_id; portENTER_CRITICAL(&group->spinlock); group->timers[timer_id] = NULL; portEXIT_CRITICAL(&group->spinlock); // timer has a reference on group, release it now mcpwm_release_group_handle(group); } static esp_err_t mcpwm_timer_destory(mcpwm_timer_t *timer) { if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_free(timer->intr), TAG, "uninstall interrupt service failed"); } if (timer->group) { mcpwm_timer_unregister_from_group(timer); } free(timer); return ESP_OK; } esp_err_t mcpwm_new_timer(const mcpwm_timer_config_t *config, mcpwm_timer_handle_t *ret_timer) { #if CONFIG_MCPWM_ENABLE_DEBUG_LOG esp_log_level_set(TAG, ESP_LOG_DEBUG); #endif esp_err_t ret = ESP_OK; mcpwm_timer_t *timer = NULL; ESP_GOTO_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); ESP_GOTO_ON_FALSE(config->group_id < SOC_MCPWM_GROUPS && config->group_id >= 0, ESP_ERR_INVALID_ARG, err, TAG, "invalid group ID:%d", config->group_id); timer = heap_caps_calloc(1, sizeof(mcpwm_timer_t), MCPWM_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for timer"); ESP_GOTO_ON_ERROR(mcpwm_timer_register_to_group(timer, config->group_id), err, TAG, "register timer failed"); mcpwm_group_t *group = timer->group; int group_id = group->group_id; mcpwm_hal_context_t *hal = &group->hal; int timer_id = timer->timer_id; // select the clock source ESP_GOTO_ON_ERROR(mcpwm_select_periph_clock(group, config->clk_src), err, TAG, "set group clock failed"); // reset the timer to a determined state mcpwm_hal_timer_reset(hal, timer_id); // set timer resolution uint32_t prescale = group->resolution_hz / config->resolution_hz; ESP_RETURN_ON_FALSE(prescale > 0 && prescale <= MCPWM_LL_MAX_TIMER_PRESCALE, ESP_ERR_INVALID_STATE, TAG, "group clock cannot match the resolution"); mcpwm_ll_timer_set_clock_prescale(hal->dev, timer_id, prescale); timer->resolution_hz = group->resolution_hz / prescale; if (timer->resolution_hz != config->resolution_hz) { ESP_LOGW(TAG, "adjust timer resolution to %"PRIu32"Hz", timer->resolution_hz); } // set the peak tickes that the timer can reach to timer->count_mode = config->count_mode; uint32_t peak_ticks = config->period_ticks; if (timer->count_mode == MCPWM_TIMER_COUNT_MODE_UP_DOWN) { peak_ticks /= 2; // in symmetric mode, peak_ticks = period_ticks / 2 } timer->peak_ticks = peak_ticks; mcpwm_ll_timer_set_peak(hal->dev, timer_id, peak_ticks, timer->count_mode == MCPWM_TIMER_COUNT_MODE_UP_DOWN); // set count direction mcpwm_ll_timer_set_count_mode(hal->dev, timer_id, timer->count_mode); // what time is allowed to update the period mcpwm_ll_timer_enable_update_period_on_sync(hal->dev, timer_id, config->flags.update_period_on_sync); mcpwm_ll_timer_enable_update_period_on_tez(hal->dev, timer_id, config->flags.update_period_on_empty); // fill in other timer specific members timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; timer->fsm = MCPWM_TIMER_FSM_INIT; *ret_timer = timer; ESP_LOGD(TAG, "new timer(%d,%d) at %p, resolution:%"PRIu32"Hz, peak:%"PRIu32", count_mod:%c", group_id, timer_id, timer, timer->resolution_hz, timer->peak_ticks, "SUDB"[timer->count_mode]); return ESP_OK; err: if (timer) { mcpwm_timer_destory(timer); } return ret; } esp_err_t mcpwm_del_timer(mcpwm_timer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // check child resources are in free state ESP_RETURN_ON_FALSE(!timer->sync_src, ESP_ERR_INVALID_STATE, TAG, "timer sync_src still in working"); ESP_RETURN_ON_FALSE(timer->fsm == MCPWM_TIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); mcpwm_group_t *group = timer->group; int timer_id = timer->timer_id; mcpwm_hal_context_t *hal = &group->hal; // disable and clear the pending interrupt portENTER_CRITICAL(&group->spinlock); mcpwm_ll_intr_enable(hal->dev, MCPWM_LL_EVENT_TIMER_MASK(timer_id), false); mcpwm_ll_intr_clear_status(hal->dev, MCPWM_LL_EVENT_TIMER_MASK(timer_id)); portEXIT_CRITICAL(&group->spinlock); ESP_LOGD(TAG, "del timer (%d,%d)", group->group_id, timer_id); // recycle memory resource ESP_RETURN_ON_ERROR(mcpwm_timer_destory(timer), TAG, "destory timer failed"); return ESP_OK; } esp_err_t mcpwm_timer_register_event_callbacks(mcpwm_timer_handle_t timer, const mcpwm_timer_event_callbacks_t *cbs, void *user_data) { ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); mcpwm_group_t *group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; mcpwm_hal_context_t *hal = &group->hal; #if CONFIG_MCPWM_ISR_IRAM_SAFE if (cbs->on_empty) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_empty), ESP_ERR_INVALID_ARG, TAG, "on_empty callback not in IRAM"); } if (cbs->on_full) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_full), ESP_ERR_INVALID_ARG, TAG, "on_full callback not in IRAM"); } if (cbs->on_stop) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_stop), ESP_ERR_INVALID_ARG, TAG, "on_stop callback not in IRAM"); } if (user_data) { ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM"); } #endif // lazy install interrupt service if (!timer->intr) { ESP_RETURN_ON_FALSE(timer->fsm == MCPWM_TIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); int isr_flags = MCPWM_INTR_ALLOC_FLAG; ESP_RETURN_ON_ERROR(esp_intr_alloc_intrstatus(mcpwm_periph_signals.groups[group_id].irq_id, isr_flags, (uint32_t)mcpwm_ll_intr_get_status_reg(hal->dev), MCPWM_LL_EVENT_TIMER_MASK(timer_id), mcpwm_timer_default_isr, timer, &timer->intr), TAG, "install interrupt service for timer failed"); } // enable/disable interrupt events portENTER_CRITICAL(&group->spinlock); mcpwm_ll_intr_enable(hal->dev, MCPWM_LL_EVENT_TIMER_FULL(timer_id), cbs->on_full != NULL); mcpwm_ll_intr_enable(hal->dev, MCPWM_LL_EVENT_TIMER_EMPTY(timer_id), cbs->on_empty != NULL); mcpwm_ll_intr_enable(hal->dev, MCPWM_LL_EVENT_TIMER_STOP(timer_id), cbs->on_stop != NULL); portEXIT_CRITICAL(&group->spinlock); timer->on_stop = cbs->on_stop; timer->on_full = cbs->on_full; timer->on_empty = cbs->on_empty; timer->user_data = user_data; return ESP_OK; } esp_err_t mcpwm_timer_get_phase(mcpwm_timer_handle_t timer, uint32_t *count_value, mcpwm_timer_direction_t *direction) { ESP_RETURN_ON_FALSE(timer && count_value && direction, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); mcpwm_group_t *group = timer->group; int timer_id = timer->timer_id; mcpwm_hal_context_t *hal = &group->hal; portENTER_CRITICAL(&timer->spinlock); *count_value = mcpwm_ll_timer_get_count_value(hal->dev, timer_id); *direction = mcpwm_ll_timer_get_count_direction(hal->dev, timer_id); portEXIT_CRITICAL(&timer->spinlock); return ESP_OK; } esp_err_t mcpwm_timer_enable(mcpwm_timer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(timer->fsm == MCPWM_TIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); mcpwm_group_t *group = timer->group; if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt failed"); } if (group->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(group->pm_lock), TAG, "acquire pm lock failed"); } timer->fsm = MCPWM_TIMER_FSM_ENABLE; return ESP_OK; } esp_err_t mcpwm_timer_disable(mcpwm_timer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(timer->fsm == MCPWM_TIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not in enable state"); mcpwm_group_t *group = timer->group; if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt failed"); } if (group->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_release(group->pm_lock), TAG, "acquire pm lock failed"); } timer->fsm = MCPWM_TIMER_FSM_INIT; return ESP_OK; } esp_err_t mcpwm_timer_start_stop(mcpwm_timer_handle_t timer, mcpwm_timer_start_stop_cmd_t command) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(timer->fsm == MCPWM_TIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not in enable state"); mcpwm_group_t *group = timer->group; portENTER_CRITICAL_SAFE(&timer->spinlock); mcpwm_ll_timer_set_start_stop_command(group->hal.dev, timer->timer_id, command); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t mcpwm_timer_set_phase_on_sync(mcpwm_timer_handle_t timer, const mcpwm_timer_sync_phase_config_t *config) { ESP_RETURN_ON_FALSE(timer && config, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); mcpwm_group_t *group = timer->group; mcpwm_hal_context_t *hal = &group->hal; int group_id = group->group_id; int timer_id = timer->timer_id; mcpwm_sync_handle_t sync_source = config->sync_src; // check if the sync direction is valid bool valid_direction = true; if (timer->count_mode == MCPWM_TIMER_COUNT_MODE_UP) { valid_direction = config->direction == MCPWM_TIMER_DIRECTION_UP; } else if (timer->count_mode == MCPWM_TIMER_COUNT_MODE_DOWN) { valid_direction = config->direction == MCPWM_TIMER_DIRECTION_DOWN; } else if (timer->count_mode == MCPWM_TIMER_COUNT_MODE_PAUSE) { valid_direction = false; } else { valid_direction = true; } ESP_RETURN_ON_FALSE(valid_direction, ESP_ERR_INVALID_ARG, TAG, "invalid sync direction"); // enable sync feature and set sync phase if (sync_source) { ESP_RETURN_ON_FALSE(config->count_value < MCPWM_LL_MAX_COUNT_VALUE, ESP_ERR_INVALID_ARG, TAG, "invalid sync count value"); switch (sync_source->type) { case MCPWM_SYNC_TYPE_TIMER: { ESP_RETURN_ON_FALSE(group == sync_source->group, ESP_ERR_INVALID_ARG, TAG, "timer and sync source are not in the same group"); mcpwm_timer_sync_src_t *timer_sync_src = __containerof(sync_source, mcpwm_timer_sync_src_t, base); mcpwm_ll_timer_set_timer_sync_input(hal->dev, timer_id, timer_sync_src->timer->timer_id); ESP_LOGD(TAG, "enable sync to timer (%d,%d) for timer (%d,%d)", group_id, timer_sync_src->timer->timer_id, group_id, timer_id); break; } case MCPWM_SYNC_TYPE_GPIO: { ESP_RETURN_ON_FALSE(group == sync_source->group, ESP_ERR_INVALID_ARG, TAG, "timer and sync source are not in the same group"); mcpwm_gpio_sync_src_t *gpio_sync_src = __containerof(sync_source, mcpwm_gpio_sync_src_t, base); mcpwm_ll_timer_set_gpio_sync_input(hal->dev, timer_id, gpio_sync_src->sync_id); ESP_LOGD(TAG, "enable sync to gpio (%d) for timer (%d,%d)", gpio_sync_src->gpio_num, group_id, timer_id); break; } case MCPWM_SYNC_TYPE_SOFT: { mcpwm_soft_sync_src_t *soft_sync = __containerof(sync_source, mcpwm_soft_sync_src_t, base); if (soft_sync->soft_sync_from == MCPWM_SOFT_SYNC_FROM_TIMER && soft_sync->timer != timer) { ESP_RETURN_ON_FALSE(false, ESP_ERR_INVALID_STATE, TAG, "soft sync already used by another timer"); } soft_sync->soft_sync_from = MCPWM_SOFT_SYNC_FROM_TIMER; soft_sync->timer = timer; soft_sync->base.group = group; break; } } mcpwm_ll_timer_set_sync_phase_direction(hal->dev, timer_id, config->direction); mcpwm_ll_timer_set_sync_phase_value(hal->dev, timer_id, config->count_value); mcpwm_ll_timer_enable_sync_input(hal->dev, timer_id, true); } else { // disable sync feature mcpwm_ll_timer_enable_sync_input(hal->dev, timer_id, false); ESP_LOGD(TAG, "disable sync for timer (%d,%d)", group_id, timer_id); } return ESP_OK; } static void IRAM_ATTR mcpwm_timer_default_isr(void *args) { mcpwm_timer_t *timer = (mcpwm_timer_t *)args; mcpwm_group_t *group = timer->group; mcpwm_hal_context_t *hal = &group->hal; int timer_id = timer->timer_id; bool need_yield = false; uint32_t status = mcpwm_ll_intr_get_status(hal->dev); mcpwm_ll_intr_clear_status(hal->dev, status & MCPWM_LL_EVENT_TIMER_MASK(timer_id)); mcpwm_timer_event_data_t edata = { .direction = mcpwm_ll_timer_get_count_direction(hal->dev, timer_id), .count_value = mcpwm_ll_timer_get_count_value(hal->dev, timer_id), }; if (status & MCPWM_LL_EVENT_TIMER_STOP(timer_id)) { mcpwm_timer_event_cb_t cb = timer->on_stop; if (cb) { if (cb(timer, &edata, timer->user_data)) { need_yield = true; } } } if (status & MCPWM_LL_EVENT_TIMER_FULL(timer_id)) { mcpwm_timer_event_cb_t cb = timer->on_full; if (cb) { if (cb(timer, &edata, timer->user_data)) { need_yield = true; } } } if (status & MCPWM_LL_EVENT_TIMER_EMPTY(timer_id)) { mcpwm_timer_event_cb_t cb = timer->on_empty; if (cb) { if (cb(timer, &edata, timer->user_data)) { need_yield = true; } } } if (need_yield) { portYIELD_FROM_ISR(); } }