// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/queue.h" #include "freertos/xtensa_api.h" #include "freertos/semphr.h" #include "esp32/rom/lldesc.h" #include "driver/gpio.h" #include "driver/i2s.h" #include "driver/dac.h" #include "hal/i2s_hal.h" #include "adc1_i2s_private.h" #include "esp_intr_alloc.h" #include "esp_err.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_pm.h" #include "esp_efuse.h" static const char* I2S_TAG = "I2S"; #define I2S_CHECK(a, str, ret) if (!(a)) { \ ESP_LOGE(I2S_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret); \ } #define I2S_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&i2s_spinlock[i2s_num]) #define I2S_ENTER_CRITICAL() portENTER_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num]) #define I2S_FULL_DUPLEX_SLAVE_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_SLAVE) #define I2S_FULL_DUPLEX_MASTER_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_MASTER) /** * @brief DMA buffer object * */ typedef struct { char **buf; int buf_size; int rw_pos; void *curr_ptr; SemaphoreHandle_t mux; xQueueHandle queue; lldesc_t **desc; } i2s_dma_t; /** * @brief I2S object instance * */ typedef struct { i2s_port_t i2s_num; /*!< I2S port number*/ int queue_size; /*!< I2S event queue size*/ QueueHandle_t i2s_queue; /*!< I2S queue handler*/ int dma_buf_count; /*!< DMA buffer count, number of buffer*/ int dma_buf_len; /*!< DMA buffer length, length of each buffer*/ i2s_dma_t *rx; /*!< DMA Tx buffer*/ i2s_dma_t *tx; /*!< DMA Rx buffer*/ i2s_isr_handle_t i2s_isr_handle; /*!< I2S Interrupt handle*/ int channel_num; /*!< Number of channels*/ int bytes_per_sample; /*!< Bytes per sample*/ int bits_per_sample; /*!< Bits per sample*/ i2s_mode_t mode; /*!< I2S Working mode*/ uint32_t sample_rate; /*!< I2S sample rate */ bool use_apll; /*!< I2S use APLL clock */ bool tx_desc_auto_clear; /*!< I2S auto clear tx descriptor on underflow */ int fixed_mclk; /*!< I2S fixed MLCK clock */ double real_rate; #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif i2s_hal_context_t hal; /*!< I2S hal context*/ } i2s_obj_t; static i2s_obj_t *p_i2s_obj[I2S_NUM_MAX] = {0}; static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX]; static int _i2s_adc_unit = -1; static int _i2s_adc_channel = -1; static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count, int dma_buf_len); static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma); inline static void gpio_matrix_out_check(uint32_t gpio, uint32_t signal_idx, bool out_inv, bool oen_inv) { //if pin = -1, do not need to configure if (gpio != -1) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO); gpio_set_direction(gpio, GPIO_MODE_DEF_OUTPUT); gpio_matrix_out(gpio, signal_idx, out_inv, oen_inv); } } inline static void gpio_matrix_in_check(uint32_t gpio, uint32_t signal_idx, bool inv) { if (gpio != -1) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO); //Set direction, for some GPIOs, the input function are not enabled as default. gpio_set_direction(gpio, GPIO_MODE_DEF_INPUT); gpio_matrix_in(gpio, signal_idx, inv); } } esp_err_t i2s_clear_intr_status(i2s_port_t i2s_num, uint32_t clr_mask) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); i2s_hal_clear_intr_status(&(p_i2s_obj[i2s_num]->hal), clr_mask); return ESP_OK; } esp_err_t i2s_enable_rx_intr(i2s_port_t i2s_num) { I2S_ENTER_CRITICAL(); i2s_hal_enable_rx_intr(&(p_i2s_obj[i2s_num]->hal)); I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_disable_rx_intr(i2s_port_t i2s_num) { I2S_ENTER_CRITICAL(); i2s_hal_disable_rx_intr(&(p_i2s_obj[i2s_num]->hal)); I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_disable_tx_intr(i2s_port_t i2s_num) { I2S_ENTER_CRITICAL(); i2s_hal_disable_tx_intr(&(p_i2s_obj[i2s_num]->hal)); I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_enable_tx_intr(i2s_port_t i2s_num) { I2S_ENTER_CRITICAL(); i2s_hal_enable_tx_intr(&(p_i2s_obj[i2s_num]->hal)); I2S_EXIT_CRITICAL(); return ESP_OK; } float i2s_get_clk(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); return p_i2s_obj[i2s_num]->real_rate; } static esp_err_t i2s_isr_register(i2s_port_t i2s_num, int intr_alloc_flags, void (*fn)(void*), void * arg, i2s_isr_handle_t *handle) { return esp_intr_alloc(i2s_periph_signal[i2s_num].irq, intr_alloc_flags, fn, arg, handle); } static float i2s_apll_get_fi2s(int bits_per_sample, int sdm0, int sdm1, int sdm2, int odir) { int f_xtal = (int)rtc_clk_xtal_freq_get() * 1000000; #if CONFIG_IDF_TARGET_ESP32 /* ESP32 rev0 silicon issue for APLL range/accuracy, please see ESP32 ECO document for more information on this */ if (esp_efuse_get_chip_ver() == 0) { sdm0 = 0; sdm1 = 0; } #endif float fout = f_xtal * (sdm2 + sdm1 / 256.0f + sdm0 / 65536.0f + 4); if (fout < APLL_MIN_FREQ || fout > APLL_MAX_FREQ) { return APLL_MAX_FREQ; } float fpll = fout / (2 * (odir+2)); //== fi2s (N=1, b=0, a=1) return fpll/2; } /** * @brief APLL calculate function, was described by following: * APLL Output frequency is given by the formula: * * apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2) * apll_freq = fout / ((o_div + 2) * 2) * * The dividend in this expression should be in the range of 240 - 600 MHz. * In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0. * * sdm0 frequency adjustment parameter, 0..255 * * sdm1 frequency adjustment parameter, 0..255 * * sdm2 frequency adjustment parameter, 0..63 * * o_div frequency divider, 0..31 * * The most accurate way to find the sdm0..2 and odir parameters is to loop through them all, * then apply the above formula, finding the closest frequency to the desired one. * But 256*256*64*32 = 134.217.728 loops are too slow with ESP32 * 1. We will choose the parameters with the highest level of change, * With 350MHz I2S_BITS_PER_SAMPLE_32BIT || bits < I2S_BITS_PER_SAMPLE_16BIT) { ESP_LOGE(I2S_TAG, "Invalid bits per sample"); return ESP_ERR_INVALID_ARG; } if (p_i2s_obj[i2s_num] == NULL) { ESP_LOGE(I2S_TAG, "Not initialized yet"); return ESP_ERR_INVALID_ARG; } p_i2s_obj[i2s_num]->sample_rate = rate; double clkmdiv = (double)I2S_BASE_CLK / (rate * factor); if (clkmdiv > 256) { ESP_LOGE(I2S_TAG, "clkmdiv is too large\r\n"); return ESP_ERR_INVALID_ARG; } // wait all on-going writing finish if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) && p_i2s_obj[i2s_num]->tx) { xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY); } if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) && p_i2s_obj[i2s_num]->rx) { xSemaphoreTake(p_i2s_obj[i2s_num]->rx->mux, (portTickType)portMAX_DELAY); } i2s_stop(i2s_num); i2s_hal_set_tx_mode(&(p_i2s_obj[i2s_num]->hal), ch, bits); i2s_hal_set_rx_mode(&(p_i2s_obj[i2s_num]->hal), ch, bits); if (p_i2s_obj[i2s_num]->channel_num != ch) { p_i2s_obj[i2s_num]->channel_num = (ch == 2) ? 2 : 1; } if (bits != p_i2s_obj[i2s_num]->bits_per_sample) { p_i2s_obj[i2s_num]->bits_per_sample = bits; p_i2s_obj[i2s_num]->bytes_per_sample = p_i2s_obj[i2s_num]->bits_per_sample / 8; // Round bytes_per_sample up to next multiple of 16 bits int halfwords_per_sample = (p_i2s_obj[i2s_num]->bits_per_sample + 15) / 16; p_i2s_obj[i2s_num]->bytes_per_sample = halfwords_per_sample * 2; // Because limited of DMA buffer is 4092 bytes if (p_i2s_obj[i2s_num]->dma_buf_len * p_i2s_obj[i2s_num]->bytes_per_sample * p_i2s_obj[i2s_num]->channel_num > 4092) { p_i2s_obj[i2s_num]->dma_buf_len = 4092 / p_i2s_obj[i2s_num]->bytes_per_sample / p_i2s_obj[i2s_num]->channel_num; } // Re-create TX DMA buffer if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { save_tx = p_i2s_obj[i2s_num]->tx; p_i2s_obj[i2s_num]->tx = i2s_create_dma_queue(i2s_num, p_i2s_obj[i2s_num]->dma_buf_count, p_i2s_obj[i2s_num]->dma_buf_len); if (p_i2s_obj[i2s_num]->tx == NULL) { ESP_LOGE(I2S_TAG, "Failed to create tx dma buffer"); i2s_driver_uninstall(i2s_num); return ESP_ERR_NO_MEM; } i2s_hal_set_out_link_addr(&(p_i2s_obj[i2s_num]->hal), (uint32_t) p_i2s_obj[i2s_num]->tx->desc[0]); //destroy old tx dma if exist if (save_tx) { i2s_destroy_dma_queue(i2s_num, save_tx); } } // Re-create RX DMA buffer if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { save_rx = p_i2s_obj[i2s_num]->rx; p_i2s_obj[i2s_num]->rx = i2s_create_dma_queue(i2s_num, p_i2s_obj[i2s_num]->dma_buf_count, p_i2s_obj[i2s_num]->dma_buf_len); if (p_i2s_obj[i2s_num]->rx == NULL){ ESP_LOGE(I2S_TAG, "Failed to create rx dma buffer"); i2s_driver_uninstall(i2s_num); return ESP_ERR_NO_MEM; } i2s_hal_set_in_link(&(p_i2s_obj[i2s_num]->hal), p_i2s_obj[i2s_num]->dma_buf_len * p_i2s_obj[i2s_num]->channel_num * p_i2s_obj[i2s_num]->bytes_per_sample, (uint32_t) p_i2s_obj[i2s_num]->rx->desc[0]); //destroy old rx dma if exist if (save_rx) { i2s_destroy_dma_queue(i2s_num, save_rx); } } } double mclk; int sdm0, sdm1, sdm2, odir, m_scale = 8; int fi2s_clk = rate*channel*bits*m_scale; if (p_i2s_obj[i2s_num]->mode & (I2S_MODE_DAC_BUILT_IN | I2S_MODE_ADC_BUILT_IN)) { //DAC uses bclk as sample clock, not WS. WS can be something arbitrary. //Rate as given to this function is the intended sample rate; //According to the TRM, WS clk equals to the sample rate, and bclk is double the speed of WS uint32_t b_clk = rate * I2S_AD_BCK_FACTOR; fi2s_clk /= I2S_AD_BCK_FACTOR; int factor2 = 60; mclk = b_clk * factor2; clkmdiv = ((double) I2S_BASE_CLK) / mclk; clkmInteger = clkmdiv; clkmDecimals = (clkmdiv - clkmInteger) / denom; bck = mclk / b_clk; #if SOC_I2S_SUPPORT_PDM } else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_PDM) { uint32_t b_clk = 0; if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { int fp; int fs; i2s_hal_get_tx_pdm(&(p_i2s_obj[i2s_num]->hal), &fp, &fs); b_clk = rate * I2S_PDM_BCK_FACTOR * (fp / fs); fi2s_clk /= (I2S_PDM_BCK_FACTOR * (fp / fs)); } else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { bool en; i2s_hal_get_rx_sinc_dsr_16_en(&(p_i2s_obj[i2s_num]->hal), &en); b_clk = rate * I2S_PDM_BCK_FACTOR * (en ? 2 : 1); fi2s_clk /= (I2S_PDM_BCK_FACTOR * (en ? 2 : 1)); } int factor2 = 5 ; mclk = b_clk * factor2; clkmdiv = ((double) I2S_BASE_CLK) / mclk; clkmInteger = clkmdiv; clkmDecimals = (clkmdiv - clkmInteger) / denom; bck = mclk / b_clk; #endif } else { clkmInteger = clkmdiv; clkmDecimals = (clkmdiv - clkmInteger) / denom; mclk = clkmInteger + denom * clkmDecimals; bck = factor/(bits * channel); } if(p_i2s_obj[i2s_num]->use_apll && p_i2s_obj[i2s_num]->fixed_mclk) { fi2s_clk = p_i2s_obj[i2s_num]->fixed_mclk; m_scale = fi2s_clk/bits/rate/channel; } if(p_i2s_obj[i2s_num]->use_apll && i2s_apll_calculate_fi2s(fi2s_clk, bits, &sdm0, &sdm1, &sdm2, &odir) == ESP_OK) { ESP_LOGD(I2S_TAG, "sdm0=%d, sdm1=%d, sdm2=%d, odir=%d", sdm0, sdm1, sdm2, odir); rtc_clk_apll_enable(1, sdm0, sdm1, sdm2, odir); i2s_hal_set_clk_div(&(p_i2s_obj[i2s_num]->hal), 1, 1, 0, m_scale, m_scale); i2s_hal_set_clock_sel(&(p_i2s_obj[i2s_num]->hal), I2S_CLK_APLL); double fi2s_rate = i2s_apll_get_fi2s(bits, sdm0, sdm1, sdm2, odir); p_i2s_obj[i2s_num]->real_rate = fi2s_rate/bits/channel/m_scale; ESP_LOGI(I2S_TAG, "APLL: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK_M: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d", rate, fi2s_rate/bits/channel/m_scale, bits, 1, m_scale, fi2s_rate, fi2s_rate/8, 1, 0); } else { i2s_hal_set_clock_sel(&(p_i2s_obj[i2s_num]->hal), I2S_CLK_D2CLK); i2s_hal_set_clk_div(&(p_i2s_obj[i2s_num]->hal), clkmInteger, 63, clkmDecimals, bck, bck); double real_rate = (double) (I2S_BASE_CLK / (bck * bits * clkmInteger) / 2); p_i2s_obj[i2s_num]->real_rate = real_rate; ESP_LOGI(I2S_TAG, "PLL_D2: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d", rate, real_rate, bits, clkmInteger, bck, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 64, clkmDecimals); } if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { p_i2s_obj[i2s_num]->tx->curr_ptr = NULL; p_i2s_obj[i2s_num]->tx->rw_pos = 0; } if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { p_i2s_obj[i2s_num]->rx->curr_ptr = NULL; p_i2s_obj[i2s_num]->rx->rw_pos = 0; } i2s_hal_set_tx_bits_mod(&(p_i2s_obj[i2s_num]->hal), bits); i2s_hal_set_rx_bits_mod(&(p_i2s_obj[i2s_num]->hal), bits); // wait all writing on-going finish if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) && p_i2s_obj[i2s_num]->tx) { xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux); } if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) && p_i2s_obj[i2s_num]->rx) { xSemaphoreGive(p_i2s_obj[i2s_num]->rx->mux); } i2s_start(i2s_num); return ESP_OK; } static void IRAM_ATTR i2s_intr_handler_default(void *arg) { i2s_obj_t *p_i2s = (i2s_obj_t*) arg; uint32_t status; i2s_hal_get_intr_status(&(p_i2s->hal), &status); if(status == 0) { //Avoid spurious interrupt return; } i2s_event_t i2s_event; int dummy; portBASE_TYPE high_priority_task_awoken = 0; lldesc_t *finish_desc; if ((status & I2S_INTR_OUT_DSCR_ERR) || (status & I2S_INTR_IN_DSCR_ERR)) { ESP_EARLY_LOGE(I2S_TAG, "dma error, interrupt status: 0x%08x", status); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_DMA_ERROR; if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } if ((status & I2S_INTR_OUT_EOF) && p_i2s->tx) { i2s_hal_get_out_eof_des_addr(&(p_i2s->hal), (uint32_t *)&finish_desc); // All buffers are empty. This means we have an underflow on our hands. if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) { xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &high_priority_task_awoken); // See if tx descriptor needs to be auto cleared: // This will avoid any kind of noise that may get introduced due to transmission // of previous data from tx descriptor on I2S line. if (p_i2s->tx_desc_auto_clear == true) { memset((void *) dummy, 0, p_i2s->tx->buf_size); } } xQueueSendFromISR(p_i2s->tx->queue, (void*)(&finish_desc->buf), &high_priority_task_awoken); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_TX_DONE; if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } if ((status & I2S_INTR_IN_SUC_EOF) && p_i2s->rx) { // All buffers are full. This means we have an overflow. i2s_hal_get_in_eof_des_addr(&(p_i2s->hal), (uint32_t *)&finish_desc); if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) { xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->rx->queue, (void*)(&finish_desc->buf), &high_priority_task_awoken); if (p_i2s->i2s_queue) { i2s_event.type = I2S_EVENT_RX_DONE; if (p_i2s->i2s_queue && xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) { xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &high_priority_task_awoken); } xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &high_priority_task_awoken); } } i2s_hal_clear_intr_status(&(p_i2s->hal), status); if (high_priority_task_awoken == pdTRUE) { portYIELD_FROM_ISR(); } } static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma) { int bux_idx; if (p_i2s_obj[i2s_num] == NULL) { ESP_LOGE(I2S_TAG, "Not initialized yet"); return ESP_ERR_INVALID_ARG; } if (dma == NULL) { ESP_LOGE(I2S_TAG, "dma is NULL"); return ESP_ERR_INVALID_ARG; } for (bux_idx = 0; bux_idx < p_i2s_obj[i2s_num]->dma_buf_count; bux_idx++) { if (dma->desc && dma->desc[bux_idx]) { free(dma->desc[bux_idx]); } if (dma->buf && dma->buf[bux_idx]) { free(dma->buf[bux_idx]); } } if (dma->buf) { free(dma->buf); } if (dma->desc) { free(dma->desc); } vQueueDelete(dma->queue); vSemaphoreDelete(dma->mux); free(dma); return ESP_OK; } static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count, int dma_buf_len) { int bux_idx; int sample_size = p_i2s_obj[i2s_num]->bytes_per_sample * p_i2s_obj[i2s_num]->channel_num; i2s_dma_t *dma = (i2s_dma_t*) malloc(sizeof(i2s_dma_t)); if (dma == NULL) { ESP_LOGE(I2S_TAG, "Error malloc i2s_dma_t"); return NULL; } memset(dma, 0, sizeof(i2s_dma_t)); dma->buf = (char **)malloc(sizeof(char*) * dma_buf_count); if (dma->buf == NULL) { ESP_LOGE(I2S_TAG, "Error malloc dma buffer pointer"); free(dma); return NULL; } memset(dma->buf, 0, sizeof(char*) * dma_buf_count); for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) { dma->buf[bux_idx] = (char*) heap_caps_calloc(1, dma_buf_len * sample_size, MALLOC_CAP_DMA); if (dma->buf[bux_idx] == NULL) { ESP_LOGE(I2S_TAG, "Error malloc dma buffer"); i2s_destroy_dma_queue(i2s_num, dma); return NULL; } ESP_LOGD(I2S_TAG, "Addr[%d] = %d", bux_idx, (int)dma->buf[bux_idx]); } dma->desc = (lldesc_t**) malloc(sizeof(lldesc_t*) * dma_buf_count); if (dma->desc == NULL) { ESP_LOGE(I2S_TAG, "Error malloc dma description"); i2s_destroy_dma_queue(i2s_num, dma); return NULL; } for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) { dma->desc[bux_idx] = (lldesc_t*) heap_caps_malloc(sizeof(lldesc_t), MALLOC_CAP_DMA); if (dma->desc[bux_idx] == NULL) { ESP_LOGE(I2S_TAG, "Error malloc dma description entry"); i2s_destroy_dma_queue(i2s_num, dma); return NULL; } } for (bux_idx = 0; bux_idx < dma_buf_count; bux_idx++) { dma->desc[bux_idx]->owner = 1; dma->desc[bux_idx]->eof = 1; dma->desc[bux_idx]->sosf = 0; dma->desc[bux_idx]->length = dma_buf_len * sample_size; dma->desc[bux_idx]->size = dma_buf_len * sample_size; dma->desc[bux_idx]->buf = (uint8_t *) dma->buf[bux_idx]; dma->desc[bux_idx]->offset = 0; dma->desc[bux_idx]->empty = (uint32_t)((bux_idx < (dma_buf_count - 1)) ? (dma->desc[bux_idx + 1]) : dma->desc[0]); } dma->queue = xQueueCreate(dma_buf_count - 1, sizeof(char*)); dma->mux = xSemaphoreCreateMutex(); dma->rw_pos = 0; dma->buf_size = dma_buf_len * sample_size; dma->curr_ptr = NULL; ESP_LOGI(I2S_TAG, "DMA Malloc info, datalen=blocksize=%d, dma_buf_count=%d", dma_buf_len * sample_size, dma_buf_count); return dma; } esp_err_t i2s_start(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); //start DMA link I2S_ENTER_CRITICAL(); i2s_hal_reset(&(p_i2s_obj[i2s_num]->hal)); esp_intr_disable(p_i2s_obj[i2s_num]->i2s_isr_handle); i2s_hal_clear_intr_status(&(p_i2s_obj[i2s_num]->hal), I2S_INTR_MAX); if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { i2s_enable_tx_intr(i2s_num); i2s_hal_start_tx(&(p_i2s_obj[i2s_num]->hal)); } if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { i2s_enable_rx_intr(i2s_num); i2s_hal_start_rx(&(p_i2s_obj[i2s_num]->hal)); } esp_intr_enable(p_i2s_obj[i2s_num]->i2s_isr_handle); I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_stop(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_ENTER_CRITICAL(); esp_intr_disable(p_i2s_obj[i2s_num]->i2s_isr_handle); if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { i2s_hal_stop_tx(&(p_i2s_obj[i2s_num]->hal)); i2s_disable_tx_intr(i2s_num); } if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { i2s_hal_stop_rx(&(p_i2s_obj[i2s_num]->hal)); i2s_disable_rx_intr(i2s_num); } uint32_t mask; i2s_hal_get_intr_status(&(p_i2s_obj[i2s_num]->hal), &mask); i2s_hal_clear_intr_status(&(p_i2s_obj[i2s_num]->hal), mask); I2S_EXIT_CRITICAL(); return ESP_OK; } esp_err_t i2s_set_dac_mode(i2s_dac_mode_t dac_mode) { I2S_CHECK((dac_mode < I2S_DAC_CHANNEL_MAX), "i2s dac mode error", ESP_ERR_INVALID_ARG); if (dac_mode == I2S_DAC_CHANNEL_DISABLE) { dac_output_disable(DAC_CHANNEL_1); dac_output_disable(DAC_CHANNEL_2); dac_i2s_disable(); } else { dac_i2s_enable(); } if (dac_mode & I2S_DAC_CHANNEL_RIGHT_EN) { //DAC1, right channel, GPIO25 dac_output_enable(DAC_CHANNEL_1); } if (dac_mode & I2S_DAC_CHANNEL_LEFT_EN) { //DAC2, left channel, GPIO26 dac_output_enable(DAC_CHANNEL_2); } return ESP_OK; } static esp_err_t _i2s_adc_mode_recover(void) { I2S_CHECK(((_i2s_adc_unit != -1) && (_i2s_adc_channel != -1)), "i2s ADC recover error, not initialized...", ESP_ERR_INVALID_ARG); return adc_i2s_mode_init(_i2s_adc_unit, _i2s_adc_channel); } esp_err_t i2s_set_adc_mode(adc_unit_t adc_unit, adc1_channel_t adc_channel) { I2S_CHECK((adc_unit < ADC_UNIT_2), "i2s ADC unit error, only support ADC1 for now", ESP_ERR_INVALID_ARG); // For now, we only support SAR ADC1. _i2s_adc_unit = adc_unit; _i2s_adc_channel = adc_channel; return adc_i2s_mode_init(adc_unit, adc_channel); } esp_err_t i2s_set_pin(i2s_port_t i2s_num, const i2s_pin_config_t *pin) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); if (pin == NULL) { return i2s_set_dac_mode(I2S_DAC_CHANNEL_BOTH_EN); } if (pin->bck_io_num != -1 && !GPIO_IS_VALID_GPIO(pin->bck_io_num)) { ESP_LOGE(I2S_TAG, "bck_io_num error"); return ESP_FAIL; } if (pin->ws_io_num != -1 && !GPIO_IS_VALID_GPIO(pin->ws_io_num)) { ESP_LOGE(I2S_TAG, "ws_io_num error"); return ESP_FAIL; } if (pin->data_out_num != -1 && !GPIO_IS_VALID_OUTPUT_GPIO(pin->data_out_num)) { ESP_LOGE(I2S_TAG, "data_out_num error"); return ESP_FAIL; } if (pin->data_in_num != -1 && !GPIO_IS_VALID_GPIO(pin->data_in_num)) { ESP_LOGE(I2S_TAG, "data_in_num error"); return ESP_FAIL; } int bck_sig = -1, ws_sig = -1, data_out_sig = -1, data_in_sig = -1; //Each IIS hw module has a RX and TX unit. //For TX unit, the output signal index should be I2SnO_xxx_OUT_IDX //For TX unit, the input signal index should be I2SnO_xxx_IN_IDX if (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) { bck_sig = i2s_periph_signal[i2s_num].o_bck_out_sig; ws_sig = i2s_periph_signal[i2s_num].o_ws_out_sig; data_out_sig = i2s_periph_signal[i2s_num].o_data_out_sig; } else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_SLAVE) { bck_sig = i2s_periph_signal[i2s_num].o_bck_in_sig; ws_sig = i2s_periph_signal[i2s_num].o_ws_in_sig; data_out_sig = i2s_periph_signal[i2s_num].o_data_out_sig; } } //For RX unit, the output signal index should be I2SnI_xxx_OUT_IDX //For RX unit, the input signal index shuld be I2SnI_xxx_IN_IDX if (p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) { bck_sig = i2s_periph_signal[i2s_num].i_bck_out_sig; ws_sig = i2s_periph_signal[i2s_num].i_ws_out_sig; data_in_sig = i2s_periph_signal[i2s_num].i_data_in_sig; } else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_SLAVE) { bck_sig = i2s_periph_signal[i2s_num].i_bck_in_sig; ws_sig = i2s_periph_signal[i2s_num].i_ws_in_sig; data_in_sig = i2s_periph_signal[i2s_num].i_data_in_sig; } } //For "full-duplex + slave" mode, we should select RX signal index for ws and bck. //For "full-duplex + master" mode, we should select TX signal index for ws and bck. if ((p_i2s_obj[i2s_num]->mode & I2S_FULL_DUPLEX_SLAVE_MODE_MASK) == I2S_FULL_DUPLEX_SLAVE_MODE_MASK) { bck_sig = i2s_periph_signal[i2s_num].i_bck_in_sig; ws_sig = i2s_periph_signal[i2s_num].i_ws_in_sig; } else if ((p_i2s_obj[i2s_num]->mode & I2S_FULL_DUPLEX_MASTER_MODE_MASK) == I2S_FULL_DUPLEX_MASTER_MODE_MASK) { bck_sig = i2s_periph_signal[i2s_num].o_bck_out_sig; ws_sig = i2s_periph_signal[i2s_num].o_ws_out_sig; } gpio_matrix_out_check(pin->data_out_num, data_out_sig, 0, 0); gpio_matrix_in_check(pin->data_in_num, data_in_sig, 0); if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) { gpio_matrix_out_check(pin->ws_io_num, ws_sig, 0, 0); gpio_matrix_out_check(pin->bck_io_num, bck_sig, 0, 0); } else if (p_i2s_obj[i2s_num]->mode & I2S_MODE_SLAVE) { gpio_matrix_in_check(pin->ws_io_num, ws_sig, 0); gpio_matrix_in_check(pin->bck_io_num, bck_sig, 0); } ESP_LOGD(I2S_TAG, "data: out %d, in: %d, ws: %d, bck: %d", data_out_sig, data_in_sig, ws_sig, bck_sig); return ESP_OK; } esp_err_t i2s_set_sample_rates(i2s_port_t i2s_num, uint32_t rate) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((p_i2s_obj[i2s_num]->bytes_per_sample > 0), "bits_per_sample not set", ESP_ERR_INVALID_ARG); return i2s_set_clk(i2s_num, rate, p_i2s_obj[i2s_num]->bits_per_sample, p_i2s_obj[i2s_num]->channel_num); } #if SOC_I2S_SUPPORT_PDM esp_err_t i2s_set_pdm_rx_down_sample(i2s_port_t i2s_num, i2s_pdm_dsr_t dsr) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); i2s_hal_set_pdm_rx_down_sample(&(p_i2s_obj[i2s_num]->hal), dsr); return i2s_set_clk(i2s_num, p_i2s_obj[i2s_num]->sample_rate, p_i2s_obj[i2s_num]->bits_per_sample, p_i2s_obj[i2s_num]->channel_num); } #endif static esp_err_t i2s_param_config(i2s_port_t i2s_num, const i2s_config_t *i2s_config) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((i2s_config), "param null", ESP_ERR_INVALID_ARG); I2S_CHECK(!((i2s_config->mode & I2S_MODE_ADC_BUILT_IN) && (i2s_num != I2S_NUM_0)), "I2S ADC built-in only support on I2S0", ESP_ERR_INVALID_ARG); I2S_CHECK(!((i2s_config->mode & I2S_MODE_DAC_BUILT_IN) && (i2s_num != I2S_NUM_0)), "I2S DAC built-in only support on I2S0", ESP_ERR_INVALID_ARG); #if SOC_I2S_SUPPORT_PDM I2S_CHECK(!((i2s_config->mode & I2S_MODE_PDM) && (i2s_num != I2S_NUM_0)), "I2S DAC PDM only support on I2S0", ESP_ERR_INVALID_ARG); #endif if(i2s_config->mode & I2S_MODE_ADC_BUILT_IN) { //in ADC built-in mode, we need to call i2s_set_adc_mode to //initialize the specific ADC channel. //in the current stage, we only support ADC1 and single channel mode. //In default data mode, the ADC data is in 12-bit resolution mode. adc_power_acquire(); } // configure I2S data port interface. i2s_hal_config_param(&(p_i2s_obj[i2s_num]->hal), i2s_config); if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) && (p_i2s_obj[i2s_num]->mode & I2S_MODE_TX)) { i2s_hal_enable_sig_loopback(&(p_i2s_obj[i2s_num]->hal)); if (p_i2s_obj[i2s_num]->mode & I2S_MODE_MASTER) { i2s_hal_enable_master_mode(&(p_i2s_obj[i2s_num]->hal)); } else { i2s_hal_enable_slave_mode(&(p_i2s_obj[i2s_num]->hal)); } } p_i2s_obj[i2s_num]->use_apll = i2s_config->use_apll; p_i2s_obj[i2s_num]->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear; p_i2s_obj[i2s_num]->fixed_mclk = i2s_config->fixed_mclk; return ESP_OK; } esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); if (p_i2s_obj[i2s_num]->rx && p_i2s_obj[i2s_num]->rx->buf != NULL && p_i2s_obj[i2s_num]->rx->buf_size != 0) { for (int i = 0; i < p_i2s_obj[i2s_num]->dma_buf_count; i++) { memset(p_i2s_obj[i2s_num]->rx->buf[i], 0, p_i2s_obj[i2s_num]->rx->buf_size); } } if (p_i2s_obj[i2s_num]->tx && p_i2s_obj[i2s_num]->tx->buf != NULL && p_i2s_obj[i2s_num]->tx->buf_size != 0) { int bytes_left = 0; bytes_left = (p_i2s_obj[i2s_num]->tx->buf_size - p_i2s_obj[i2s_num]->tx->rw_pos) % 4; if (bytes_left) { size_t zero_bytes = 0, bytes_written; i2s_write(i2s_num, (void *)&zero_bytes, bytes_left, &bytes_written, portMAX_DELAY); } for (int i = 0; i < p_i2s_obj[i2s_num]->dma_buf_count; i++) { memset(p_i2s_obj[i2s_num]->tx->buf[i], 0, p_i2s_obj[i2s_num]->tx->buf_size); } } return ESP_OK; } esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config, int queue_size, void* i2s_queue) { esp_err_t err; I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((i2s_config != NULL), "I2S configuration must not NULL", ESP_ERR_INVALID_ARG); I2S_CHECK((i2s_config->dma_buf_count >= 2 && i2s_config->dma_buf_count <= 128), "I2S buffer count less than 128 and more than 2", ESP_ERR_INVALID_ARG); I2S_CHECK((i2s_config->dma_buf_len >= 8 && i2s_config->dma_buf_len <= 1024), "I2S buffer length at most 1024 and more than 8", ESP_ERR_INVALID_ARG); if (p_i2s_obj[i2s_num] == NULL) { p_i2s_obj[i2s_num] = (i2s_obj_t*) malloc(sizeof(i2s_obj_t)); if (p_i2s_obj[i2s_num] == NULL) { ESP_LOGE(I2S_TAG, "Malloc I2S driver error"); return ESP_ERR_NO_MEM; } memset(p_i2s_obj[i2s_num], 0, sizeof(i2s_obj_t)); portMUX_TYPE i2s_spinlock_unlocked[1] = {portMUX_INITIALIZER_UNLOCKED}; for (int x = 0; x < I2S_NUM_MAX; x++) { i2s_spinlock[x] = i2s_spinlock_unlocked[0]; } //To make sure hardware is enabled before any hardware register operations. periph_module_enable(i2s_periph_signal[i2s_num].module); i2s_hal_init(&(p_i2s_obj[i2s_num]->hal), i2s_num); p_i2s_obj[i2s_num]->i2s_num = i2s_num; p_i2s_obj[i2s_num]->dma_buf_count = i2s_config->dma_buf_count; p_i2s_obj[i2s_num]->dma_buf_len = i2s_config->dma_buf_len; p_i2s_obj[i2s_num]->i2s_queue = i2s_queue; p_i2s_obj[i2s_num]->mode = i2s_config->mode; p_i2s_obj[i2s_num]->bits_per_sample = 0; p_i2s_obj[i2s_num]->bytes_per_sample = 0; // Not initialized yet p_i2s_obj[i2s_num]->channel_num = i2s_config->channel_format < I2S_CHANNEL_FMT_ONLY_RIGHT ? 2 : 1; #ifdef CONFIG_PM_ENABLE if (i2s_config->use_apll) { err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i2s_driver", &p_i2s_obj[i2s_num]->pm_lock); } else { err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "i2s_driver", &p_i2s_obj[i2s_num]->pm_lock); } if (err != ESP_OK) { free(p_i2s_obj[i2s_num]); p_i2s_obj[i2s_num] = NULL; ESP_LOGE(I2S_TAG, "I2S pm lock error"); return err; } #endif //CONFIG_PM_ENABLE //initial interrupt err = i2s_isr_register(i2s_num, i2s_config->intr_alloc_flags, i2s_intr_handler_default, p_i2s_obj[i2s_num], &p_i2s_obj[i2s_num]->i2s_isr_handle); if (err != ESP_OK) { #ifdef CONFIG_PM_ENABLE if (p_i2s_obj[i2s_num]->pm_lock) { esp_pm_lock_delete(p_i2s_obj[i2s_num]->pm_lock); } #endif free(p_i2s_obj[i2s_num]); p_i2s_obj[i2s_num] = NULL; ESP_LOGE(I2S_TAG, "Register I2S Interrupt error"); return err; } i2s_stop(i2s_num); err = i2s_param_config(i2s_num, i2s_config); if (err != ESP_OK) { i2s_driver_uninstall(i2s_num); ESP_LOGE(I2S_TAG, "I2S param configure error"); return err; } if (i2s_queue) { p_i2s_obj[i2s_num]->i2s_queue = xQueueCreate(queue_size, sizeof(i2s_event_t)); *((QueueHandle_t*) i2s_queue) = p_i2s_obj[i2s_num]->i2s_queue; ESP_LOGI(I2S_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_i2s_obj[i2s_num]->i2s_queue)); } else { p_i2s_obj[i2s_num]->i2s_queue = NULL; } //set clock and start return i2s_set_clk(i2s_num, i2s_config->sample_rate, i2s_config->bits_per_sample, p_i2s_obj[i2s_num]->channel_num); } ESP_LOGW(I2S_TAG, "I2S driver already installed"); return ESP_OK; } esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); if (p_i2s_obj[i2s_num] == NULL) { ESP_LOGI(I2S_TAG, "already uninstalled"); return ESP_OK; } i2s_stop(i2s_num); esp_intr_free(p_i2s_obj[i2s_num]->i2s_isr_handle); if (p_i2s_obj[i2s_num]->tx != NULL && p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) { i2s_destroy_dma_queue(i2s_num, p_i2s_obj[i2s_num]->tx); p_i2s_obj[i2s_num]->tx = NULL; } if (p_i2s_obj[i2s_num]->rx != NULL && p_i2s_obj[i2s_num]->mode & I2S_MODE_RX) { i2s_destroy_dma_queue(i2s_num, p_i2s_obj[i2s_num]->rx); p_i2s_obj[i2s_num]->rx = NULL; } if (p_i2s_obj[i2s_num]->i2s_queue) { vQueueDelete(p_i2s_obj[i2s_num]->i2s_queue); p_i2s_obj[i2s_num]->i2s_queue = NULL; } if(p_i2s_obj[i2s_num]->use_apll) { // switch back to PLL clock source i2s_hal_set_clock_sel(&(p_i2s_obj[i2s_num]->hal), I2S_CLK_D2CLK); rtc_clk_apll_enable(0, 0, 0, 0, 0); } #ifdef CONFIG_PM_ENABLE if (p_i2s_obj[i2s_num]->pm_lock) { esp_pm_lock_delete(p_i2s_obj[i2s_num]->pm_lock); } #endif free(p_i2s_obj[i2s_num]); p_i2s_obj[i2s_num] = NULL; periph_module_disable(i2s_periph_signal[i2s_num].module); return ESP_OK; } esp_err_t i2s_write(i2s_port_t i2s_num, const void *src, size_t size, size_t *bytes_written, TickType_t ticks_to_wait) { char *data_ptr, *src_byte; int bytes_can_write; *bytes_written = 0; I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((size < I2S_MAX_BUFFER_SIZE), "size is too large", ESP_ERR_INVALID_ARG); I2S_CHECK((p_i2s_obj[i2s_num]->tx), "tx NULL", ESP_ERR_INVALID_ARG); xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(p_i2s_obj[i2s_num]->pm_lock); #endif src_byte = (char *)src; while (size > 0) { if (p_i2s_obj[i2s_num]->tx->rw_pos == p_i2s_obj[i2s_num]->tx->buf_size || p_i2s_obj[i2s_num]->tx->curr_ptr == NULL) { if (xQueueReceive(p_i2s_obj[i2s_num]->tx->queue, &p_i2s_obj[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s_obj[i2s_num]->tx->rw_pos = 0; } ESP_LOGD(I2S_TAG, "size: %d, rw_pos: %d, buf_size: %d, curr_ptr: %d", size, p_i2s_obj[i2s_num]->tx->rw_pos, p_i2s_obj[i2s_num]->tx->buf_size, (int)p_i2s_obj[i2s_num]->tx->curr_ptr); data_ptr = (char*)p_i2s_obj[i2s_num]->tx->curr_ptr; data_ptr += p_i2s_obj[i2s_num]->tx->rw_pos; bytes_can_write = p_i2s_obj[i2s_num]->tx->buf_size - p_i2s_obj[i2s_num]->tx->rw_pos; if (bytes_can_write > size) { bytes_can_write = size; } memcpy(data_ptr, src_byte, bytes_can_write); size -= bytes_can_write; src_byte += bytes_can_write; p_i2s_obj[i2s_num]->tx->rw_pos += bytes_can_write; (*bytes_written) += bytes_can_write; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(p_i2s_obj[i2s_num]->pm_lock); #endif xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux); return ESP_OK; } esp_err_t i2s_adc_enable(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((p_i2s_obj[i2s_num] != NULL), "Not initialized yet", ESP_ERR_INVALID_STATE); I2S_CHECK((p_i2s_obj[i2s_num]->mode & I2S_MODE_ADC_BUILT_IN), "i2s built-in adc not enabled", ESP_ERR_INVALID_STATE); adc1_i2s_mode_acquire(); _i2s_adc_mode_recover(); i2s_hal_start_rx(&(p_i2s_obj[i2s_num]->hal)); i2s_hal_reset(&(p_i2s_obj[i2s_num]->hal)); return i2s_set_clk(i2s_num, p_i2s_obj[i2s_num]->sample_rate, p_i2s_obj[i2s_num]->bits_per_sample, p_i2s_obj[i2s_num]->channel_num); } esp_err_t i2s_adc_disable(i2s_port_t i2s_num) { I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((p_i2s_obj[i2s_num] != NULL), "Not initialized yet", ESP_ERR_INVALID_STATE); I2S_CHECK((p_i2s_obj[i2s_num]->mode & I2S_MODE_ADC_BUILT_IN), "i2s built-in adc not enabled", ESP_ERR_INVALID_STATE); adc1_lock_release(); return ESP_OK; } esp_err_t i2s_write_expand(i2s_port_t i2s_num, const void *src, size_t size, size_t src_bits, size_t aim_bits, size_t *bytes_written, TickType_t ticks_to_wait) { char *data_ptr; int bytes_can_write, tail; int src_bytes, aim_bytes, zero_bytes; *bytes_written = 0; I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((size > 0), "size must greater than zero", ESP_ERR_INVALID_ARG); I2S_CHECK((aim_bits * size < I2S_MAX_BUFFER_SIZE), "size is too large", ESP_ERR_INVALID_ARG); I2S_CHECK((aim_bits >= src_bits), "aim_bits mustn't be less than src_bits", ESP_ERR_INVALID_ARG); I2S_CHECK((p_i2s_obj[i2s_num]->tx), "tx NULL", ESP_ERR_INVALID_ARG); if (src_bits < I2S_BITS_PER_SAMPLE_8BIT || aim_bits < I2S_BITS_PER_SAMPLE_8BIT) { ESP_LOGE(I2S_TAG,"bits mustn't be less than 8, src_bits %d aim_bits %d", src_bits, aim_bits); return ESP_ERR_INVALID_ARG; } if (src_bits > I2S_BITS_PER_SAMPLE_32BIT || aim_bits > I2S_BITS_PER_SAMPLE_32BIT) { ESP_LOGE(I2S_TAG,"bits mustn't be greater than 32, src_bits %d aim_bits %d", src_bits, aim_bits); return ESP_ERR_INVALID_ARG; } if ((src_bits == I2S_BITS_PER_SAMPLE_16BIT || src_bits == I2S_BITS_PER_SAMPLE_32BIT) && (size % 2 != 0)) { ESP_LOGE(I2S_TAG,"size must be a even number while src_bits is even, src_bits %d size %d", src_bits, size); return ESP_ERR_INVALID_ARG; } if (src_bits == I2S_BITS_PER_SAMPLE_24BIT && (size % 3 != 0)) { ESP_LOGE(I2S_TAG,"size must be a multiple of 3 while src_bits is 24, size %d", size); return ESP_ERR_INVALID_ARG; } src_bytes = src_bits / 8; aim_bytes = aim_bits / 8; zero_bytes = aim_bytes - src_bytes; xSemaphoreTake(p_i2s_obj[i2s_num]->tx->mux, (portTickType)portMAX_DELAY); size = size * aim_bytes / src_bytes; ESP_LOGD(I2S_TAG,"aim_bytes %d src_bytes %d size %d", aim_bytes, src_bytes, size); while (size > 0) { if (p_i2s_obj[i2s_num]->tx->rw_pos == p_i2s_obj[i2s_num]->tx->buf_size || p_i2s_obj[i2s_num]->tx->curr_ptr == NULL) { if (xQueueReceive(p_i2s_obj[i2s_num]->tx->queue, &p_i2s_obj[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s_obj[i2s_num]->tx->rw_pos = 0; } data_ptr = (char*)p_i2s_obj[i2s_num]->tx->curr_ptr; data_ptr += p_i2s_obj[i2s_num]->tx->rw_pos; bytes_can_write = p_i2s_obj[i2s_num]->tx->buf_size - p_i2s_obj[i2s_num]->tx->rw_pos; if (bytes_can_write > size) { bytes_can_write = size; } tail = bytes_can_write % aim_bytes; bytes_can_write = bytes_can_write - tail; memset(data_ptr, 0, bytes_can_write); for (int j = 0; j < bytes_can_write; j += (aim_bytes - zero_bytes)) { j += zero_bytes; memcpy(&data_ptr[j], (const char *)(src + *bytes_written), aim_bytes - zero_bytes); (*bytes_written) += (aim_bytes - zero_bytes); } size -= bytes_can_write; p_i2s_obj[i2s_num]->tx->rw_pos += bytes_can_write; } xSemaphoreGive(p_i2s_obj[i2s_num]->tx->mux); return ESP_OK; } esp_err_t i2s_read(i2s_port_t i2s_num, void *dest, size_t size, size_t *bytes_read, TickType_t ticks_to_wait) { char *data_ptr, *dest_byte; int bytes_can_read; *bytes_read = 0; dest_byte = (char *)dest; I2S_CHECK((i2s_num < I2S_NUM_MAX), "i2s_num error", ESP_ERR_INVALID_ARG); I2S_CHECK((size < I2S_MAX_BUFFER_SIZE), "size is too large", ESP_ERR_INVALID_ARG); I2S_CHECK((p_i2s_obj[i2s_num]->rx), "rx NULL", ESP_ERR_INVALID_ARG); xSemaphoreTake(p_i2s_obj[i2s_num]->rx->mux, (portTickType)portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(p_i2s_obj[i2s_num]->pm_lock); #endif while (size > 0) { if (p_i2s_obj[i2s_num]->rx->rw_pos == p_i2s_obj[i2s_num]->rx->buf_size || p_i2s_obj[i2s_num]->rx->curr_ptr == NULL) { if (xQueueReceive(p_i2s_obj[i2s_num]->rx->queue, &p_i2s_obj[i2s_num]->rx->curr_ptr, ticks_to_wait) == pdFALSE) { break; } p_i2s_obj[i2s_num]->rx->rw_pos = 0; } data_ptr = (char*)p_i2s_obj[i2s_num]->rx->curr_ptr; data_ptr += p_i2s_obj[i2s_num]->rx->rw_pos; bytes_can_read = p_i2s_obj[i2s_num]->rx->buf_size - p_i2s_obj[i2s_num]->rx->rw_pos; if (bytes_can_read > size) { bytes_can_read = size; } memcpy(dest_byte, data_ptr, bytes_can_read); size -= bytes_can_read; dest_byte += bytes_can_read; p_i2s_obj[i2s_num]->rx->rw_pos += bytes_can_read; (*bytes_read) += bytes_can_read; } #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(p_i2s_obj[i2s_num]->pm_lock); #endif xSemaphoreGive(p_i2s_obj[i2s_num]->rx->mux); return ESP_OK; }