// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include // For MIN/MAX(a, b) #include #include #include #include #include #include #include #include "sdkconfig.h" #include "esp_ipc.h" #include "esp_attr.h" #include "esp_spi_flash.h" #include "esp_log.h" #include "esp_clk.h" #include "esp_flash_partitions.h" #include "esp_ota_ops.h" #include "cache_utils.h" #include "esp_timer.h" /* bytes erased by SPIEraseBlock() ROM function */ #define BLOCK_ERASE_SIZE 65536 /* Limit number of bytes written/read in a single SPI operation, as these operations disable all higher priority tasks from running. */ #define MAX_WRITE_CHUNK 8192 #define MAX_READ_CHUNK 16384 static const char *TAG __attribute__((unused)) = "spi_flash"; #if CONFIG_SPI_FLASH_ENABLE_COUNTERS static spi_flash_counters_t s_flash_stats; #define COUNTER_START() uint32_t ts_begin = xthal_get_ccount() #define COUNTER_STOP(counter) \ do{ \ s_flash_stats.counter.count++; \ s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \ } while(0) #define COUNTER_ADD_BYTES(counter, size) \ do { \ s_flash_stats.counter.bytes += size; \ } while (0) #else #define COUNTER_START() #define COUNTER_STOP(counter) #define COUNTER_ADD_BYTES(counter, size) #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS static esp_err_t spi_flash_translate_rc(esp_rom_spiflash_result_t rc); static bool is_safe_write_address(size_t addr, size_t size); static void spi_flash_os_yield(void); const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = { .start = spi_flash_disable_interrupts_caches_and_other_cpu, .end = spi_flash_enable_interrupts_caches_and_other_cpu, .op_lock = spi_flash_op_lock, .op_unlock = spi_flash_op_unlock, #if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED .is_safe_write_address = is_safe_write_address, #endif .yield = spi_flash_os_yield, }; const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = { .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os, .end = spi_flash_enable_interrupts_caches_no_os, .op_lock = NULL, .op_unlock = NULL, #if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED .is_safe_write_address = NULL, #endif .yield = NULL, }; static const spi_flash_guard_funcs_t *s_flash_guard_ops; #ifdef CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ABORTS #define UNSAFE_WRITE_ADDRESS abort() #else #define UNSAFE_WRITE_ADDRESS return false #endif /* CHECK_WRITE_ADDRESS macro to fail writes which land in the bootloader, partition table, or running application region. */ #if CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED #define CHECK_WRITE_ADDRESS(ADDR, SIZE) #else /* FAILS or ABORTS */ #define CHECK_WRITE_ADDRESS(ADDR, SIZE) do { \ if (s_flash_guard_ops && s_flash_guard_ops->is_safe_write_address && !s_flash_guard_ops->is_safe_write_address(ADDR, SIZE)) { \ return ESP_ERR_INVALID_ARG; \ } \ } while(0) #endif // CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED static __attribute__((unused)) bool is_safe_write_address(size_t addr, size_t size) { bool result = true; if (addr <= ESP_PARTITION_TABLE_OFFSET + ESP_PARTITION_TABLE_MAX_LEN) { UNSAFE_WRITE_ADDRESS; } const esp_partition_t *p = esp_ota_get_running_partition(); if (addr >= p->address && addr < p->address + p->size) { UNSAFE_WRITE_ADDRESS; } if (addr < p->address && addr + size > p->address) { UNSAFE_WRITE_ADDRESS; } return result; } void spi_flash_init() { spi_flash_init_lock(); #if CONFIG_SPI_FLASH_ENABLE_COUNTERS spi_flash_reset_counters(); #endif } void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs) { s_flash_guard_ops = funcs; } const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get() { return s_flash_guard_ops; } size_t IRAM_ATTR spi_flash_get_chip_size() { return g_rom_flashchip.chip_size; } static inline void IRAM_ATTR spi_flash_guard_start() { if (s_flash_guard_ops && s_flash_guard_ops->start) { s_flash_guard_ops->start(); } } static inline void IRAM_ATTR spi_flash_guard_end() { if (s_flash_guard_ops && s_flash_guard_ops->end) { s_flash_guard_ops->end(); } } static inline void IRAM_ATTR spi_flash_guard_op_lock() { if (s_flash_guard_ops && s_flash_guard_ops->op_lock) { s_flash_guard_ops->op_lock(); } } static inline void IRAM_ATTR spi_flash_guard_op_unlock() { if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) { s_flash_guard_ops->op_unlock(); } } static void IRAM_ATTR spi_flash_os_yield(void) { #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE vTaskDelay(CONFIG_SPI_FLASH_ERASE_YIELD_TICKS); #endif } static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock() { static bool unlocked = false; if (!unlocked) { spi_flash_guard_start(); esp_rom_spiflash_result_t rc = esp_rom_spiflash_unlock(); spi_flash_guard_end(); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { return rc; } unlocked = true; } return ESP_ROM_SPIFLASH_RESULT_OK; } esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec) { CHECK_WRITE_ADDRESS(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE); return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE); } esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size) { CHECK_WRITE_ADDRESS(start_addr, size); if (start_addr % SPI_FLASH_SEC_SIZE != 0) { return ESP_ERR_INVALID_ARG; } if (size % SPI_FLASH_SEC_SIZE != 0) { return ESP_ERR_INVALID_SIZE; } if (size + start_addr > spi_flash_get_chip_size()) { return ESP_ERR_INVALID_SIZE; } size_t start = start_addr / SPI_FLASH_SEC_SIZE; size_t end = start + size / SPI_FLASH_SEC_SIZE; const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE; COUNTER_START(); esp_rom_spiflash_result_t rc; rc = spi_flash_unlock(); if (rc == ESP_ROM_SPIFLASH_RESULT_OK) { for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) { #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE int64_t start_time_us = esp_timer_get_time(); #endif spi_flash_guard_start(); if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) { rc = esp_rom_spiflash_erase_block(sector / sectors_per_block); sector += sectors_per_block; COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE); } else { rc = esp_rom_spiflash_erase_sector(sector); ++sector; COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE); } spi_flash_guard_end(); #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE int dt_ms = (esp_timer_get_time() - start_time_us) / 1000; if (dt_ms >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS || dt_ms * 2 >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS) { /* For example when dt_ms = 15 and CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS = 20. * In this case we need to call vTaskDelay because * the duration of this command + the next command probably will exceed more than 20. */ if (s_flash_guard_ops && s_flash_guard_ops->yield) { s_flash_guard_ops->yield(); } } #endif } } COUNTER_STOP(erase); spi_flash_guard_start(); // Ensure WEL is 0 after the operation, even if the erase failed. esp_rom_spiflash_write_disable(); spi_flash_check_and_flush_cache(start_addr, size); spi_flash_guard_end(); return spi_flash_translate_rc(rc); } /* Wrapper around esp_rom_spiflash_write() that verifies data as written if CONFIG_SPI_FLASH_VERIFY_WRITE is set. If CONFIG_SPI_FLASH_VERIFY_WRITE is not set, this is esp_rom_spiflash_write(). */ static IRAM_ATTR esp_rom_spiflash_result_t spi_flash_write_inner(uint32_t target, const uint32_t *src_addr, int32_t len) { #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE return esp_rom_spiflash_write(target, src_addr, len); #else // CONFIG_SPI_FLASH_VERIFY_WRITE esp_rom_spiflash_result_t res = ESP_ROM_SPIFLASH_RESULT_OK; assert(len % sizeof(uint32_t) == 0); uint32_t before_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)]; uint32_t after_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)]; int32_t remaining = len; for(int i = 0; i < len; i += sizeof(before_buf)) { int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes) int32_t read_len = MIN(sizeof(before_buf), remaining); // Read "before" contents from flash res = esp_rom_spiflash_read(target + i, before_buf, read_len); if (res != ESP_ROM_SPIFLASH_RESULT_OK) { break; } #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE for (int r = 0; r < read_len; r += sizeof(uint32_t)) { int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes) uint32_t write = src_addr[i_w + r_w]; uint32_t before = before_buf[r_w]; if ((before & write) != write) { spi_flash_guard_end(); ESP_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x", target + i + r, write, before, before & write); spi_flash_guard_start(); } } #endif res = esp_rom_spiflash_write(target + i, &src_addr[i_w], read_len); if (res != ESP_ROM_SPIFLASH_RESULT_OK) { break; } res = esp_rom_spiflash_read(target + i, after_buf, read_len); if (res != ESP_ROM_SPIFLASH_RESULT_OK) { break; } for (int r = 0; r < read_len; r += sizeof(uint32_t)) { int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes) uint32_t expected = src_addr[i_w + r_w] & before_buf[r_w]; uint32_t actual = after_buf[r_w]; if (expected != actual) { #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE spi_flash_guard_end(); ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", target + i + r, expected, actual); spi_flash_guard_start(); #endif res = ESP_ROM_SPIFLASH_RESULT_ERR; } } if (res != ESP_ROM_SPIFLASH_RESULT_OK) { break; } remaining -= read_len; } return res; #endif // CONFIG_SPI_FLASH_VERIFY_WRITE } esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size) { CHECK_WRITE_ADDRESS(dst, size); // Out of bound writes are checked in ROM code, but we can give better // error code here if (dst + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_SIZE; } if (size == 0) { return ESP_OK; } esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK; COUNTER_START(); const uint8_t *srcc = (const uint8_t *) srcv; /* * Large operations are split into (up to) 3 parts: * - Left padding: 4 bytes up to the first 4-byte aligned destination offset. * - Middle part * - Right padding: 4 bytes from the last 4-byte aligned offset covered. */ size_t left_off = dst & ~3U; size_t left_size = MIN(((dst + 3) & ~3U) - dst, size); size_t mid_off = left_size; size_t mid_size = (size - left_size) & ~3U; size_t right_off = left_size + mid_size; size_t right_size = size - mid_size - left_size; rc = spi_flash_unlock(); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } if (left_size > 0) { uint32_t t = 0xffffffff; memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size); spi_flash_guard_start(); rc = spi_flash_write_inner(left_off, &t, 4); spi_flash_guard_end(); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(write, 4); } if (mid_size > 0) { /* If src buffer is 4-byte aligned as well and is not in a region that requires cache access to be enabled, we * can write directly without buffering in RAM. */ #ifdef ESP_PLATFORM bool direct_write = esp_ptr_internal(srcc) && esp_ptr_byte_accessible(srcc) && ((uintptr_t) srcc + mid_off) % 4 == 0; #else bool direct_write = true; #endif while(mid_size > 0 && rc == ESP_ROM_SPIFLASH_RESULT_OK) { uint32_t write_buf[8]; uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK); const uint8_t *write_src = srcc + mid_off; if (!direct_write) { write_size = MIN(write_size, sizeof(write_buf)); memcpy(write_buf, write_src, write_size); write_src = (const uint8_t *)write_buf; } spi_flash_guard_start(); rc = spi_flash_write_inner(dst + mid_off, (const uint32_t *) write_src, write_size); spi_flash_guard_end(); COUNTER_ADD_BYTES(write, write_size); mid_size -= write_size; mid_off += write_size; } if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } } if (right_size > 0) { uint32_t t = 0xffffffff; memcpy(&t, srcc + right_off, right_size); spi_flash_guard_start(); rc = spi_flash_write_inner(dst + right_off, &t, 4); spi_flash_guard_end(); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(write, 4); } out: COUNTER_STOP(write); spi_flash_guard_start(); // Ensure WEL is 0 after the operation, even if the write failed. esp_rom_spiflash_write_disable(); spi_flash_check_and_flush_cache(dst, size); spi_flash_guard_end(); return spi_flash_translate_rc(rc); } esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size) { CHECK_WRITE_ADDRESS(dest_addr, size); const uint8_t *ssrc = (const uint8_t *)src; if ((dest_addr % 16) != 0) { return ESP_ERR_INVALID_ARG; } if ((size % 16) != 0) { return ESP_ERR_INVALID_SIZE; } COUNTER_START(); esp_rom_spiflash_result_t rc; rc = spi_flash_unlock(); if (rc == ESP_ROM_SPIFLASH_RESULT_OK) { /* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes, so copy to a temporary buffer - 32 bytes at a time. Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of data to encrypt, and each row is two 16 byte AES blocks that share a key (as derived from flash address). */ uint8_t encrypt_buf[32] __attribute__((aligned(4))); uint32_t row_size; for (size_t i = 0; i < size; i += row_size) { uint32_t row_addr = dest_addr + i; if (i == 0 && (row_addr % 32) != 0) { /* writing to second block of a 32 byte row */ row_size = 16; row_addr -= 16; /* copy to second block in buffer */ memcpy(encrypt_buf + 16, ssrc + i, 16); /* decrypt the first block from flash, will reencrypt to same bytes */ spi_flash_read_encrypted(row_addr, encrypt_buf, 16); } else if (size - i == 16) { /* 16 bytes left, is first block of a 32 byte row */ row_size = 16; /* copy to first block in buffer */ memcpy(encrypt_buf, ssrc + i, 16); /* decrypt the second block from flash, will reencrypt to same bytes */ spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16); } else { /* Writing a full 32 byte row (2 blocks) */ row_size = 32; memcpy(encrypt_buf, ssrc + i, 32); } spi_flash_guard_start(); rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32); spi_flash_guard_end(); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { break; } } bzero(encrypt_buf, sizeof(encrypt_buf)); } COUNTER_ADD_BYTES(write, size); COUNTER_STOP(write); spi_flash_guard_start(); esp_rom_spiflash_write_disable(); spi_flash_check_and_flush_cache(dest_addr, size); spi_flash_guard_end(); return spi_flash_translate_rc(rc); } esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size) { // Out of bound reads are checked in ROM code, but we can give better // error code here if (src + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_SIZE; } if (size == 0) { return ESP_OK; } esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK; COUNTER_START(); spi_flash_guard_start(); /* To simplify boundary checks below, we handle small reads separately. */ if (size < 16) { uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */ uint32_t read_src = src & ~3U; uint32_t left_off = src & 3U; uint32_t read_size = (left_off + size + 3) & ~3U; rc = esp_rom_spiflash_read(read_src, t, read_size); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, read_size); #ifdef ESP_PLATFORM if (esp_ptr_external_ram(dstv)) { spi_flash_guard_end(); memcpy(dstv, ((uint8_t *) t) + left_off, size); spi_flash_guard_start(); } else { memcpy(dstv, ((uint8_t *) t) + left_off, size); } #else memcpy(dstv, ((uint8_t *) t) + left_off, size); #endif goto out; } uint8_t *dstc = (uint8_t *) dstv; intptr_t dsti = (intptr_t) dstc; /* * Large operations are split into (up to) 3 parts: * - The middle part: from the first 4-aligned position in src to the first * 4-aligned position in dst. */ size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4)); size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4)); size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U; /* * - Once the middle part is in place, src_mid_off bytes from the preceding * 4-aligned source location are added on the left. */ size_t pad_left_src = src & ~3U; size_t pad_left_size = src_mid_off; /* * - Finally, the right part is added: from the end of the middle part to * the end. Depending on the alignment of source and destination, this may * be a 4 or 8 byte read from pad_right_src. */ size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U; size_t pad_right_off = (pad_right_src - src); size_t pad_right_size = (size - pad_right_off); #ifdef ESP_PLATFORM bool direct_read = esp_ptr_internal(dstc) && esp_ptr_byte_accessible(dstc) && ((uintptr_t) dstc + dst_mid_off) % 4 == 0; #else bool direct_read = true; #endif if (mid_size > 0) { uint32_t mid_remaining = mid_size; uint32_t mid_read = 0; while (mid_remaining > 0) { uint32_t read_size = MIN(mid_remaining, MAX_READ_CHUNK); uint32_t read_buf[8]; uint8_t *read_dst_final = dstc + dst_mid_off + mid_read; uint8_t *read_dst = read_dst_final; if (!direct_read) { read_size = MIN(read_size, sizeof(read_buf)); read_dst = (uint8_t *) read_buf; } rc = esp_rom_spiflash_read(src + src_mid_off + mid_read, (uint32_t *) read_dst, read_size); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } mid_remaining -= read_size; mid_read += read_size; if (!direct_read) { spi_flash_guard_end(); memcpy(read_dst_final, read_buf, read_size); spi_flash_guard_start(); } else if (mid_remaining > 0) { /* Drop guard momentarily, allows other tasks to preempt */ spi_flash_guard_end(); spi_flash_guard_start(); } } COUNTER_ADD_BYTES(read, mid_size); /* * If offsets in src and dst are different, perform an in-place shift * to put destination data into its final position. * Note that the shift can be left (src_mid_off < dst_mid_off) or right. */ if (src_mid_off != dst_mid_off) { if (!direct_read) { spi_flash_guard_end(); } memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size); if (!direct_read) { spi_flash_guard_start(); } } } if (pad_left_size > 0) { uint32_t t; rc = esp_rom_spiflash_read(pad_left_src, &t, 4); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, 4); if (!direct_read) { spi_flash_guard_end(); } memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size); if (!direct_read) { spi_flash_guard_start(); } } if (pad_right_size > 0) { uint32_t t[2]; int32_t read_size = (pad_right_size <= 4 ? 4 : 8); rc = esp_rom_spiflash_read(pad_right_src, t, read_size); if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, read_size); if (!direct_read) { spi_flash_guard_end(); } memcpy(dstc + pad_right_off, t, pad_right_size); if (!direct_read) { spi_flash_guard_start(); } } out: spi_flash_guard_end(); COUNTER_STOP(read); return spi_flash_translate_rc(rc); } esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size) { if (src + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_SIZE; } if (size == 0) { return ESP_OK; } esp_err_t err; const uint8_t *map; spi_flash_mmap_handle_t map_handle; size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE - 1); size_t map_size = size + (src - map_src); err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle); if (err != ESP_OK) { return err; } memcpy(dstv, map + (src - map_src), size); spi_flash_munmap(map_handle); return err; } static esp_err_t IRAM_ATTR spi_flash_translate_rc(esp_rom_spiflash_result_t rc) { switch (rc) { case ESP_ROM_SPIFLASH_RESULT_OK: return ESP_OK; case ESP_ROM_SPIFLASH_RESULT_TIMEOUT: return ESP_ERR_FLASH_OP_TIMEOUT; case ESP_ROM_SPIFLASH_RESULT_ERR: default: return ESP_ERR_FLASH_OP_FAIL; } } #if CONFIG_SPI_FLASH_ENABLE_COUNTERS static inline void dump_counter(spi_flash_counter_t *counter, const char *name) { ESP_LOGI(TAG, "%s count=%8d time=%8dus bytes=%8d\n", name, counter->count, counter->time, counter->bytes); } const spi_flash_counters_t *spi_flash_get_counters() { return &s_flash_stats; } void spi_flash_reset_counters() { memset(&s_flash_stats, 0, sizeof(s_flash_stats)); } void spi_flash_dump_counters() { dump_counter(&s_flash_stats.read, "read "); dump_counter(&s_flash_stats.write, "write"); dump_counter(&s_flash_stats.erase, "erase"); } #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS