/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_log.h" #include "hal/mmu_ll.h" #include "soc/mmu.h" #include "esp_private/esp_mmu_map_private.h" #include "esp_mmu_map.h" #if CONFIG_SPIRAM #include "esp_private/esp_psram_extram.h" #include "esp_private/mmu_psram_flash.h" #endif #include "esp_private/cache_utils.h" #include "spi_flash_mmap.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32H4 #include "esp32h4/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32C2 #include "esp32c2/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32C6 #include "esp32c6/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/cache.h" #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS extern int _instruction_reserved_start; extern int _instruction_reserved_end; #endif #if CONFIG_SPIRAM_RODATA extern int _rodata_reserved_start; extern int _rodata_reserved_end; #endif #if !CONFIG_SPI_FLASH_ROM_IMPL typedef struct mmap_block_t { uint32_t *vaddr_list; int list_num; } mmap_block_t; esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { esp_err_t ret = ESP_FAIL; mmu_mem_caps_t caps = 0; void *ptr = NULL; mmap_block_t *block = NULL; uint32_t *vaddr_list = NULL; block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL); if (!block) { ret = ESP_ERR_NO_MEM; goto err; } vaddr_list = heap_caps_calloc(1, 1 * sizeof(uint32_t), MALLOC_CAP_INTERNAL); if (!vaddr_list) { ret = ESP_ERR_NO_MEM; goto err; } block->vaddr_list = vaddr_list; if (memory == SPI_FLASH_MMAP_INST) { caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT; } else { caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT; } ret = esp_mmu_map(src_addr, size, caps, MMU_TARGET_FLASH0, &ptr); if (ret == ESP_OK) { vaddr_list[0] = (uint32_t)ptr; block->list_num = 1; } else if (ret == ESP_ERR_INVALID_STATE) { /** * paddr region is mapped already, * to keep `flash_mmap.c` original behaviour, we consider this as a valid behaviour. * Set `list_num` to 0 so we don't need to call `esp_mmu_unmap` to this one, as `esp_mmu_map` * doesn't really create a new handle. */ block->list_num = 0; } else { goto err; } *out_ptr = ptr; *out_handle = (uint32_t)block; return ESP_OK; err: if (vaddr_list) { free(vaddr_list); } if (block) { free(block); } return ret; } static int s_find_non_contiguous_block_nums(const int *pages, int page_count) { int nums = 1; int last_end = pages[0] + 1; for (int i = 1; i < page_count; i++) { if (pages[i] != last_end) { nums++; } last_end = pages[i] + 1; } return nums; } static void s_merge_contiguous_pages(const int *pages, uint32_t page_count, int block_nums, int (*out_blocks)[2]) { uint32_t last_end = pages[0] + 1; int new_array_id = 0; out_blocks[new_array_id][0] = pages[0]; out_blocks[new_array_id][1] = 1; for (int i = 1; i < page_count; i++) { if (pages[i] != last_end) { new_array_id += 1; assert(new_array_id < block_nums); out_blocks[new_array_id][0] = pages[i]; out_blocks[new_array_id][1] = 1; } else { out_blocks[new_array_id][1] += 1; } last_end = pages[i] + 1; } } static void s_pages_to_bytes(int (*blocks)[2], int block_nums) { for (int i = 0; i < block_nums; i++) { blocks[i][0] = blocks[i][0] * CONFIG_MMU_PAGE_SIZE; blocks[i][1] = blocks[i][1] * CONFIG_MMU_PAGE_SIZE; } } esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { esp_err_t ret = ESP_FAIL; mmu_mem_caps_t caps = 0; mmap_block_t *block = NULL; uint32_t *vaddr_list = NULL; int successful_cnt = 0; int block_num = s_find_non_contiguous_block_nums(pages, page_count); int paddr_blocks[block_num][2]; s_merge_contiguous_pages(pages, page_count, block_num, paddr_blocks); s_pages_to_bytes(paddr_blocks, block_num); block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL); if (!block) { ret = ESP_ERR_NO_MEM; goto err; } vaddr_list = heap_caps_calloc(1, block_num * sizeof(uint32_t), MALLOC_CAP_INTERNAL); if (!vaddr_list) { ret = ESP_ERR_NO_MEM; goto err; } if (memory == SPI_FLASH_MMAP_INST) { caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT; } else { caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT; } for (int i = 0; i < block_num; i++) { void *ptr = NULL; ret = esp_mmu_map(paddr_blocks[i][0], paddr_blocks[i][1], caps, MMU_TARGET_FLASH0, &ptr); if (ret == ESP_OK) { vaddr_list[i] = (uint32_t)ptr; successful_cnt++; } else { /** * A note for `ret == ESP_ERR_INVALID_STATE`: * If one of the `*pages` are mapped already, this means we can't find a * consecutive vaddr block for these `*pages` */ goto err; } vaddr_list[i] = (uint32_t)ptr; } block->vaddr_list = vaddr_list; block->list_num = successful_cnt; /** * We get a contiguous vaddr block, but may contain multiple esp_mmu handles. * The first handle vaddr is the start address of this contiguous vaddr block. */ *out_ptr = (void *)vaddr_list[0]; *out_handle = (uint32_t)block; return ESP_OK; err: for (int i = 0; i < successful_cnt; i++) { esp_mmu_unmap((void *)vaddr_list[i]); } if (vaddr_list) { free(vaddr_list); } if (block) { free(block); } return ret; } void spi_flash_munmap(spi_flash_mmap_handle_t handle) { esp_err_t ret = ESP_FAIL; mmap_block_t *block = (void *)handle; for (int i = 0; i < block->list_num; i++) { ret = esp_mmu_unmap((void *)block->vaddr_list[i]); if (ret == ESP_ERR_NOT_FOUND) { assert(0 && "invalid handle, or handle already unmapped"); } } free(block->vaddr_list); free(block); } void spi_flash_mmap_dump(void) { esp_mmu_map_dump_mapped_blocks(stdout); } uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory) { mmu_mem_caps_t caps = 0; if (memory == SPI_FLASH_MMAP_INST) { caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT; } else { caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT; } size_t len = 0; esp_mmu_map_get_max_consecutive_free_block_size(caps, MMU_TARGET_FLASH0, &len); return len / CONFIG_MMU_PAGE_SIZE; } size_t spi_flash_cache2phys(const void *cached) { if (cached == NULL) { return SPI_FLASH_CACHE2PHYS_FAIL; } esp_err_t ret = ESP_FAIL; uint32_t paddr = 0; mmu_target_t target = 0; ret = esp_mmu_vaddr_to_paddr((void *)cached, &paddr, &target); if (ret != ESP_OK) { return SPI_FLASH_CACHE2PHYS_FAIL; } int offset = 0; #if CONFIG_SPIRAM_RODATA if ((uint32_t)cached >= (uint32_t)&_rodata_reserved_start && (uint32_t)cached <= (uint32_t)&_rodata_reserved_end) { offset = rodata_flash2spiram_offset(); } #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS if ((uint32_t)cached >= (uint32_t)&_instruction_reserved_start && (uint32_t)cached <= (uint32_t)&_instruction_reserved_end) { offset = instruction_flash2spiram_offset(); } #endif return paddr + offset * CONFIG_MMU_PAGE_SIZE; } const void * spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory) { esp_err_t ret = ESP_FAIL; void *ptr = NULL; mmu_target_t target = MMU_TARGET_FLASH0; __attribute__((unused)) uint32_t phys_page = phys_offs / CONFIG_MMU_PAGE_SIZE; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) { target = MMU_TARGET_PSRAM0; phys_offs -= instruction_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE; } #endif #if CONFIG_SPIRAM_RODATA if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) { target = MMU_TARGET_PSRAM0; phys_offs -= rodata_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE; } #endif mmu_vaddr_t type = (memory == SPI_FLASH_MMAP_DATA) ? MMU_VADDR_DATA : MMU_VADDR_INSTRUCTION; ret = esp_mmu_paddr_to_vaddr(phys_offs, target, type, &ptr); if (ret == ESP_ERR_NOT_FOUND) { return NULL; } assert(ret == ESP_OK); return (const void *)ptr; } static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr) { int start[2], end[2]; *out_ptr = NULL; /* SPI_FLASH_MMAP_DATA */ start[0] = SOC_MMU_DROM0_PAGES_START; end[0] = SOC_MMU_DROM0_PAGES_END; /* SPI_FLASH_MMAP_INST */ start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE; end[1] = SOC_MMU_IROM0_PAGES_END; for (int j = 0; j < 2; j++) { for (int i = start[j]; i < end[j]; i++) { uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i); if (entry_pro == SOC_MMU_PAGE_IN_FLASH(phys_page)) { #if !CONFIG_IDF_TARGET_ESP32 if (j == 0) { /* SPI_FLASH_MMAP_DATA */ *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0])); } else { /* SPI_FLASH_MMAP_INST */ *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1])); } #endif return true; } } } return false; } /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */ IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length) { bool ret = false; /* align start_addr & length to full MMU pages */ uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1); length += (start_addr - page_start_addr); length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1); for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) { uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE; // TODO: IDF-4969 if (page >= 256) { return false; /* invalid address */ } const void *vaddr = NULL; if (is_page_mapped_in_cache(page, &vaddr)) { #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPIRAM esp_psram_extram_writeback_cache(); #endif Cache_Flush(0); #ifndef CONFIG_FREERTOS_UNICORE Cache_Flush(1); #endif return true; #else // CONFIG_IDF_TARGET_ESP32 if (vaddr != NULL) { Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE); ret = true; } #endif // CONFIG_IDF_TARGET_ESP32 } } return ret; } #endif //!CONFIG_SPI_FLASH_ROM_IMPL