/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "freertos/FreeRTOS.h" #include "esp_attr.h" #include "soc/rtc.h" #include "soc/soc_caps.h" #include "esp_rom_caps.h" #include "esp_rom_sys.h" #include "esp_private/esp_clk.h" #include "hal/clk_tree_ll.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/rtc.h" #include "esp32/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/rtc.h" #include "esp32s2/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/rtc.h" #include "esp32s3/rtc.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/rtc.h" #include "esp32c3/rtc.h" #elif CONFIG_IDF_TARGET_ESP32C2 #include "esp32c2/rom/rtc.h" #include "esp32c2/rtc.h" #elif CONFIG_IDF_TARGET_ESP32C6 #include "esp32c6/rom/rtc.h" #include "esp32c6/rtc.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/rtc.h" #include "esp32h2/rtc.h" #endif #define MHZ (1000000) // g_ticks_us defined in ROMs for PRO and APP CPU extern uint32_t g_ticks_per_us_pro; #if SOC_CPU_CORES_NUM > 1 #ifndef CONFIG_FREERTOS_UNICORE extern uint32_t g_ticks_per_us_app; #endif #endif static portMUX_TYPE s_esp_rtc_time_lock = portMUX_INITIALIZER_UNLOCKED; #if SOC_RTC_FAST_MEM_SUPPORTED static RTC_NOINIT_ATTR uint64_t s_esp_rtc_time_us, s_rtc_last_ticks; #endif inline static int IRAM_ATTR s_get_cpu_freq_mhz(void) { #if ESP_ROM_GET_CLK_FREQ return esp_rom_get_cpu_ticks_per_us(); #else return g_ticks_per_us_pro; #endif } int IRAM_ATTR esp_clk_cpu_freq(void) { return s_get_cpu_freq_mhz() * MHZ; } int IRAM_ATTR esp_clk_apb_freq(void) { // TODO: IDF-5173 Require cleanup, implementation should be unified #if CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2 return rtc_clk_apb_freq_get(); #else return MIN(s_get_cpu_freq_mhz() * MHZ, APB_CLK_FREQ); #endif } int IRAM_ATTR esp_clk_xtal_freq(void) { return rtc_clk_xtal_freq_get() * MHZ; } #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us) { /* Update scale factors used by esp_rom_delay_us */ g_ticks_per_us_pro = ticks_per_us; #if SOC_CPU_CORES_NUM > 1 #ifndef CONFIG_FREERTOS_UNICORE g_ticks_per_us_app = ticks_per_us; #endif #endif } #endif uint64_t esp_rtc_get_time_us(void) { portENTER_CRITICAL_SAFE(&s_esp_rtc_time_lock); const uint32_t cal = esp_clk_slowclk_cal_get(); #if SOC_RTC_FAST_MEM_SUPPORTED if (cal == 0) { s_esp_rtc_time_us = 0; s_rtc_last_ticks = 0; } const uint64_t rtc_this_ticks = rtc_time_get(); const uint64_t ticks = rtc_this_ticks - s_rtc_last_ticks; #else const uint64_t ticks = rtc_time_get(); #endif /* RTC counter result is up to 2^48, calibration factor is up to 2^24, * for a 32kHz clock. We need to calculate (assuming no overflow): * (ticks * cal) >> RTC_CLK_CAL_FRACT * * An overflow in the (ticks * cal) multiplication would cause time to * wrap around after approximately 13 days, which is probably not enough * for some applications. * Therefore multiplication is split into two terms, for the lower 32-bit * and the upper 16-bit parts of "ticks", i.e.: * ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT */ const uint64_t ticks_low = ticks & UINT32_MAX; const uint64_t ticks_high = ticks >> 32; const uint64_t delta_time_us = ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT)); #if SOC_RTC_FAST_MEM_SUPPORTED s_esp_rtc_time_us += delta_time_us; s_rtc_last_ticks = rtc_this_ticks; portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock); return s_esp_rtc_time_us; #else uint64_t esp_rtc_time_us = delta_time_us + clk_ll_rtc_slow_load_rtc_fix_us(); portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock); return esp_rtc_time_us; #endif } void esp_clk_slowclk_cal_set(uint32_t new_cal) { #if defined(CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER) /* To force monotonic time values even when clock calibration value changes, * we adjust esp_rtc_time */ #if SOC_RTC_FAST_MEM_SUPPORTED esp_rtc_get_time_us(); #else portENTER_CRITICAL_SAFE(&s_esp_rtc_time_lock); uint32_t old_cal = clk_ll_rtc_slow_load_cal(); if (old_cal != 0) { /** * The logic of time correction is: * old_rtc_us = ticks * old_cal >> RTC_CLK_CAL_FRACT + old_fix_us * new_rtc_us = ticks * new_cal >> RTC_CLK_CAL_FRACT + new_fix_us * * Keep "old_rtc_us == new_rtc_us" to make time monotonically increasing, * then we can get new_fix_us: * new_fix_us = (ticks * old_cal >> RTC_CLK_CAL_FRACT + old_fix_us) - (ticks * new_cal >> RTC_CLK_CAL_FRACT) */ uint64_t ticks = rtc_time_get(); const uint64_t ticks_low = ticks & UINT32_MAX; const uint64_t ticks_high = ticks >> 32; uint64_t old_fix_us = clk_ll_rtc_slow_load_rtc_fix_us(); uint64_t new_fix_us; old_fix_us += ((ticks_low * old_cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * old_cal) << (32 - RTC_CLK_CAL_FRACT)); new_fix_us = ((ticks_low * new_cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * new_cal) << (32 - RTC_CLK_CAL_FRACT)); new_fix_us = old_fix_us - new_fix_us; clk_ll_rtc_slow_store_rtc_fix_us(new_fix_us); } portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock); #endif // SOC_RTC_FAST_MEM_SUPPORTED #endif // CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER clk_ll_rtc_slow_store_cal(new_cal); } uint32_t esp_clk_slowclk_cal_get(void) { return clk_ll_rtc_slow_load_cal(); } uint64_t esp_clk_rtc_time(void) { #ifdef CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER return esp_rtc_get_time_us(); #else return 0; #endif } void esp_clk_private_lock(void) { portENTER_CRITICAL(&s_esp_rtc_time_lock); } void esp_clk_private_unlock(void) { portEXIT_CRITICAL(&s_esp_rtc_time_lock); }