// Copyright 2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_app_trace_util.h" #include "sdkconfig.h" /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Locks ///////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// #if ESP_APPTRACE_PRINT_LOCK static esp_apptrace_lock_t s_log_lock = {.irq_stat = 0, .portmux = portMUX_INITIALIZER_UNLOCKED}; #endif int esp_apptrace_log_lock(void) { #if ESP_APPTRACE_PRINT_LOCK esp_apptrace_tmo_t tmo; esp_apptrace_tmo_init(&tmo, ESP_APPTRACE_TMO_INFINITE); int ret = esp_apptrace_lock_take(&s_log_lock, &tmo); return ret; #else return 0; #endif } void esp_apptrace_log_unlock(void) { #if ESP_APPTRACE_PRINT_LOCK esp_apptrace_lock_give(&s_log_lock); #endif } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// TIMEOUT ///////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo) { if (tmo->tmo != (int64_t)-1) { tmo->elapsed = esp_timer_get_time() - tmo->start; if (tmo->elapsed >= tmo->tmo) { return ESP_ERR_TIMEOUT; } } return ESP_OK; } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// LOCK //////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *lock, esp_apptrace_tmo_t *tmo) { int res; while (1) { // do not overwrite lock->int_state before we actually acquired the mux unsigned int_state = portENTER_CRITICAL_NESTED(); // FIXME: if mux is busy it is not good idea to loop during the whole tmo with disabled IRQs. // So we check mux state using zero tmo, restore IRQs and let others tasks/IRQs to run on this CPU // while we are doing our own tmo check. #ifdef CONFIG_FREERTOS_PORTMUX_DEBUG bool success = vPortCPUAcquireMutexTimeout(&lock->mux, 0, __FUNCTION__, __LINE__); #else bool success = vPortCPUAcquireMutexTimeout(&lock->mux, 0); #endif if (success) { lock->int_state = int_state; return ESP_OK; } portEXIT_CRITICAL_NESTED(int_state); // we can be preempted from this place till the next call (above) to portENTER_CRITICAL_NESTED() res = esp_apptrace_tmo_check(tmo); if (res != ESP_OK) { break; } } return res; } esp_err_t esp_apptrace_lock_give(esp_apptrace_lock_t *lock) { // save lock's irq state value for this CPU unsigned int_state = lock->int_state; // after call to the following func we can not be sure that lock->int_state // is not overwritten by other CPU who has acquired the mux just after we released it. See esp_apptrace_lock_take(). #ifdef CONFIG_FREERTOS_PORTMUX_DEBUG vPortCPUReleaseMutex(&lock->mux, __FUNCTION__, __LINE__); #else vPortCPUReleaseMutex(&lock->mux); #endif portEXIT_CRITICAL_NESTED(int_state); return ESP_OK; } /////////////////////////////////////////////////////////////////////////////// ////////////////////////////// RING BUFFER //////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// uint8_t *esp_apptrace_rb_produce(esp_apptrace_rb_t *rb, uint32_t size) { uint8_t *ptr = rb->data + rb->wr; // check for avalable space if (rb->rd <= rb->wr) { // |?R......W??| if (rb->wr + size >= rb->size) { if (rb->rd == 0) { return NULL; // cannot wrap wr } if (rb->wr + size == rb->size) { rb->wr = 0; } else { // check if we can wrap wr earlier to get space for requested size if (size > rb->rd - 1) { return NULL; // cannot wrap wr } // shrink buffer a bit, full size will be restored at rd wrapping rb->cur_size = rb->wr; rb->wr = 0; ptr = rb->data; if (rb->rd == rb->cur_size) { rb->rd = 0; if (rb->cur_size < rb->size) { rb->cur_size = rb->size; } } rb->wr += size; } } else { rb->wr += size; } } else { // |?W......R??| if (size > rb->rd - rb->wr - 1) { return NULL; } rb->wr += size; } return ptr; } uint8_t *esp_apptrace_rb_consume(esp_apptrace_rb_t *rb, uint32_t size) { uint8_t *ptr = rb->data + rb->rd; if (rb->rd <= rb->wr) { // |?R......W??| if (rb->rd + size > rb->wr) { return NULL; } rb->rd += size; } else { // |?W......R??| if (rb->rd + size > rb->cur_size) { return NULL; } else if (rb->rd + size == rb->cur_size) { // restore full size usage if (rb->cur_size < rb->size) { rb->cur_size = rb->size; } rb->rd = 0; } else { rb->rd += size; } } return ptr; } uint32_t esp_apptrace_rb_read_size_get(esp_apptrace_rb_t *rb) { uint32_t size = 0; if (rb->rd <= rb->wr) { // |?R......W??| size = rb->wr - rb->rd; } else { // |?W......R??| size = rb->cur_size - rb->rd; } return size; } uint32_t esp_apptrace_rb_write_size_get(esp_apptrace_rb_t *rb) { uint32_t size = 0; if (rb->rd <= rb->wr) { // |?R......W??| size = rb->size - rb->wr; if (size && rb->rd == 0) { size--; } } else { // |?W......R??| size = rb->rd - rb->wr - 1; } return size; }