# SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD # SPDX-License-Identifier: Apache-2.0 """ DUT for IDF applications """ import collections import functools import io import os import os.path import re import subprocess import sys import tempfile import time import pexpect import serial # python2 and python3 queue package name is different try: import Queue as _queue except ImportError: import queue as _queue # type: ignore from serial.tools import list_ports from tiny_test_fw import DUT, Utility try: import esptool except ImportError: # cheat and use IDF's copy of esptool if available idf_path = os.getenv('IDF_PATH') if not idf_path or not os.path.exists(idf_path): raise sys.path.insert(0, os.path.join(idf_path, 'components', 'esptool_py', 'esptool')) import esptool try: # esptool>=4.0 detect_chip = esptool.cmds.detect_chip FatalError = esptool.util.FatalError targets = esptool.targets except (AttributeError, ModuleNotFoundError): # esptool<4.0 detect_chip = esptool.ESPLoader.detect_chip FatalError = esptool.FatalError targets = esptool import espefuse import espsecure class IDFToolError(OSError): pass class IDFDUTException(RuntimeError): pass class IDFRecvThread(DUT.RecvThread): PERFORMANCE_PATTERN = re.compile(r'\[Performance]\[(\w+)]: ([^\r\n]+)\r?\n') EXCEPTION_PATTERNS = [ re.compile(r"(Guru Meditation Error: Core\s+\d panic'ed \([\w].*?\))"), re.compile(r'(abort\(\) was called at PC 0x[a-fA-F\d]{8} on core \d)'), re.compile(r'(rst 0x\d+ \(TG\dWDT_SYS_RESET|TGWDT_CPU_RESET\))') ] BACKTRACE_PATTERN = re.compile(r'Backtrace:((\s(0x[0-9a-f]{8}):0x[0-9a-f]{8})+)') BACKTRACE_ADDRESS_PATTERN = re.compile(r'(0x[0-9a-f]{8}):0x[0-9a-f]{8}') def __init__(self, read, dut): super(IDFRecvThread, self).__init__(read, dut) self.exceptions = _queue.Queue() self.performance_items = _queue.Queue() def collect_performance(self, comp_data): matches = self.PERFORMANCE_PATTERN.findall(comp_data) for match in matches: Utility.console_log('[Performance][{}]: {}'.format(match[0], match[1]), color='orange') self.performance_items.put((match[0], match[1])) def detect_exception(self, comp_data): for pattern in self.EXCEPTION_PATTERNS: start = 0 while True: match = pattern.search(comp_data, pos=start) if match: start = match.end() self.exceptions.put(match.group(0)) Utility.console_log('[Exception]: {}'.format(match.group(0)), color='red') else: break def detect_backtrace(self, comp_data): start = 0 while True: match = self.BACKTRACE_PATTERN.search(comp_data, pos=start) if match: start = match.end() Utility.console_log('[Backtrace]:{}'.format(match.group(1)), color='red') # translate backtrace addresses = self.BACKTRACE_ADDRESS_PATTERN.findall(match.group(1)) translated_backtrace = '' for addr in addresses: ret = self.dut.lookup_pc_address(addr) if ret: translated_backtrace += ret + '\n' if translated_backtrace: Utility.console_log('Translated backtrace\n:' + translated_backtrace, color='yellow') else: Utility.console_log('Failed to translate backtrace', color='yellow') else: break CHECK_FUNCTIONS = [collect_performance, detect_exception, detect_backtrace] def _uses_esptool(func): """ Suspend listener thread, connect with esptool, call target function with esptool instance, then resume listening for output """ @functools.wraps(func) def handler(self, *args, **kwargs): self.stop_receive() settings = self.port_inst.get_settings() try: if not self.rom_inst: if not self.secure_boot_en: self.rom_inst = detect_chip(self.port_inst) else: self.rom_inst = self.get_rom()(self.port_inst) self.rom_inst.connect('hard_reset') if (self.secure_boot_en): esp = self.rom_inst esp.flash_spi_attach(0) else: esp = self.rom_inst.run_stub() ret = func(self, esp, *args, **kwargs) # do hard reset after use esptool esp.hard_reset() finally: # always need to restore port settings self.port_inst.apply_settings(settings) self.start_receive() return ret return handler class IDFDUT(DUT.SerialDUT): """ IDF DUT, extends serial with esptool methods (Becomes aware of IDFApp instance which holds app-specific data) """ # /dev/ttyAMA0 port is listed in Raspberry Pi # /dev/tty.Bluetooth-Incoming-Port port is listed in Mac INVALID_PORT_PATTERN = re.compile(r'AMA|Bluetooth') # if need to erase NVS partition in start app ERASE_NVS = True RECV_THREAD_CLS = IDFRecvThread def __init__(self, name, port, log_file, app, allow_dut_exception=False, **kwargs): super(IDFDUT, self).__init__(name, port, log_file, app, **kwargs) self.allow_dut_exception = allow_dut_exception self.exceptions = _queue.Queue() self.performance_items = _queue.Queue() self.rom_inst = None self.secure_boot_en = self.app.get_sdkconfig_config_value('CONFIG_SECURE_BOOT') and \ not self.app.get_sdkconfig_config_value('CONFIG_EFUSE_VIRTUAL') @classmethod def get_rom(cls): raise NotImplementedError('This is an abstraction class, method not defined.') @classmethod def get_mac(cls, app, port): """ get MAC address via esptool :param app: application instance (to get tool) :param port: serial port as string :return: MAC address or None """ esp = None try: esp = cls.get_rom()(port) esp.connect() return esp.read_mac() except RuntimeError: return None finally: if esp: # do hard reset after use esptool esp.hard_reset() esp._port.close() @classmethod def confirm_dut(cls, port, **kwargs): inst = None try: expected_rom_class = cls.get_rom() except NotImplementedError: expected_rom_class = None try: # TODO: check whether 8266 works with this logic # Otherwise overwrite it in ESP8266DUT inst = detect_chip(port) if expected_rom_class and type(inst) != expected_rom_class: raise RuntimeError('Target not expected') return inst.read_mac() is not None, get_target_by_rom_class(type(inst)) except (FatalError, RuntimeError): return False, None finally: if inst is not None: inst._port.close() def _try_flash(self, erase_nvs): """ Called by start_app() :return: None """ flash_files = [] encrypt_files = [] try: # Open the files here to prevents us from having to seek back to 0 # each time. Before opening them, we have to organize the lists the # way esptool.write_flash needs: # If encrypt is provided, flash_files contains all the files to # flash. # Else, flash_files contains the files to be flashed as plain text # and encrypt_files contains the ones to flash encrypted. flash_files = self.app.flash_files encrypt_files = self.app.encrypt_files encrypt = self.app.flash_settings.get('encrypt', False) if encrypt: flash_files = encrypt_files encrypt_files = [] else: flash_files = [entry for entry in flash_files if entry not in encrypt_files] flash_files = [(offs, open(path, 'rb')) for (offs, path) in flash_files] encrypt_files = [(offs, open(path, 'rb')) for (offs, path) in encrypt_files] if erase_nvs: address = self.app.partition_table['nvs']['offset'] size = self.app.partition_table['nvs']['size'] nvs_file = tempfile.TemporaryFile() nvs_file.write(b'\xff' * size) nvs_file.seek(0) if not isinstance(address, int): address = int(address, 0) # We have to check whether this file needs to be added to # flash_files list or encrypt_files. # Get the CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT macro # value. If it is set to True, then NVS is always encrypted. sdkconfig_dict = self.app.get_sdkconfig() macro_encryption = 'CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT' in sdkconfig_dict # If the macro is not enabled (plain text flash) or all files # must be encrypted, add NVS to flash_files. if not macro_encryption or encrypt: flash_files.append((address, nvs_file)) else: encrypt_files.append((address, nvs_file)) self.write_flash_data(flash_files, encrypt_files, False, encrypt) finally: for (_, f) in flash_files: f.close() for (_, f) in encrypt_files: f.close() @_uses_esptool def write_flash_data(self, esp, flash_files=None, encrypt_files=None, ignore_flash_encryption_efuse_setting=True, encrypt=False): """ Try flashing at a particular baud rate. Structured this way so @_uses_esptool will reconnect each time :return: None """ last_error = None for baud_rate in [921600, 115200]: try: # fake flasher args object, this is a hack until # esptool Python API is improved class FlashArgs(object): def __init__(self, attributes): for key, value in attributes.items(): self.__setattr__(key, value) # write_flash expects the parameter encrypt_files to be None and not # an empty list, so perform the check here flash_args = FlashArgs({ 'flash_size': self.app.flash_settings['flash_size'], 'flash_mode': self.app.flash_settings['flash_mode'], 'flash_freq': self.app.flash_settings['flash_freq'], 'addr_filename': flash_files or None, 'encrypt_files': encrypt_files or None, 'no_stub': self.secure_boot_en, 'compress': not self.secure_boot_en, 'verify': False, 'encrypt': encrypt, 'ignore_flash_encryption_efuse_setting': ignore_flash_encryption_efuse_setting, 'erase_all': False, 'after': 'no_reset', 'force': False, 'chip': esp.CHIP_NAME.lower().replace('-', ''), }) esp.change_baud(baud_rate) esptool.detect_flash_size(esp, flash_args) esptool.write_flash(esp, flash_args) break except RuntimeError as e: last_error = e else: raise last_error def image_info(self, path_to_file): """ get hash256 of app :param: path: path to file :return: sha256 appended to app """ old_stdout = sys.stdout new_stdout = io.StringIO() sys.stdout = new_stdout class Args(object): def __init__(self, attributes): for key, value in attributes.items(): self.__setattr__(key, value) args = Args({ 'chip': self.TARGET, 'filename': path_to_file, }) esptool.image_info(args) output = new_stdout.getvalue() sys.stdout = old_stdout return output def start_app(self, erase_nvs=ERASE_NVS): """ download and start app. :param: erase_nvs: whether erase NVS partition during flash :return: None """ self._try_flash(erase_nvs) def start_app_no_enc(self): """ download and start app. :param: erase_nvs: whether erase NVS partition during flash :return: None """ flash_files = self.app.flash_files + self.app.encrypt_files self.write_flash(flash_files) def write_flash(self, flash_files=None, encrypt_files=None, ignore_flash_encryption_efuse_setting=True, encrypt=False): """ Flash files :return: None """ flash_offs_files = [] encrypt_offs_files = [] try: if flash_files: flash_offs_files = [(offs, open(path, 'rb')) for (offs, path) in flash_files] if encrypt_files: encrypt_offs_files = [(offs, open(path, 'rb')) for (offs, path) in encrypt_files] self.write_flash_data(flash_offs_files, encrypt_offs_files, ignore_flash_encryption_efuse_setting, encrypt) finally: for (_, f) in flash_offs_files: f.close() for (_, f) in encrypt_offs_files: f.close() def bootloader_flash(self): """ download bootloader. :return: None """ bootloader_path = os.path.join(self.app.binary_path, 'bootloader', 'bootloader.bin') offs = int(self.app.get_sdkconfig()['CONFIG_BOOTLOADER_OFFSET_IN_FLASH'], 0) flash_files = [(offs, bootloader_path)] self.write_flash(flash_files) @_uses_esptool def reset(self, esp): """ hard reset DUT :return: None """ # decorator `_use_esptool` will do reset # so we don't need to do anything in this method pass @_uses_esptool def erase_partition(self, esp, partition): """ :param partition: partition name to erase :return: None """ address = self.app.partition_table[partition]['offset'] size = self.app.partition_table[partition]['size'] esp.erase_region(address, size) @_uses_esptool def erase_flash(self, esp): """ erase the flash completely :return: None """ esp.erase_flash() @_uses_esptool def dump_flash(self, esp, output_file, **kwargs): """ dump flash :param output_file: output file name, if relative path, will use sdk path as base path. :keyword partition: partition name, dump the partition. ``partition`` is preferred than using ``address`` and ``size``. :keyword address: dump from address (need to be used with size) :keyword size: dump size (need to be used with address) :return: None """ if os.path.isabs(output_file) is False: output_file = os.path.relpath(output_file, self.app.get_log_folder()) if 'partition' in kwargs: partition = self.app.partition_table[kwargs['partition']] _address = partition['offset'] _size = partition['size'] elif 'address' in kwargs and 'size' in kwargs: _address = kwargs['address'] _size = kwargs['size'] else: raise IDFToolError("You must specify 'partition' or ('address' and 'size') to dump flash") content = esp.read_flash(_address, _size) with open(output_file, 'wb') as f: f.write(content) @staticmethod def _sort_usb_ports(ports): """ Move the usb ports to the very beginning :param ports: list of ports :return: list of ports with usb ports at beginning """ usb_ports = [] rest_ports = [] for port in ports: if 'usb' in port.lower(): usb_ports.append(port) else: rest_ports.append(port) return usb_ports + rest_ports @classmethod def list_available_ports(cls): # It will return other kinds of ports as well, such as ttyS* ports. # Give the usb ports higher priority ports = cls._sort_usb_ports([x.device for x in list_ports.comports()]) espport = os.getenv('ESPPORT') if not espport: # It's a little hard filter out invalid port with `serial.tools.list_ports.grep()`: # The check condition in `grep` is: `if r.search(port) or r.search(desc) or r.search(hwid)`. # This means we need to make all 3 conditions fail, to filter out the port. # So some part of the filters will not be straight forward to users. # And negative regular expression (`^((?!aa|bb|cc).)*$`) is not easy to understand. # Filter out invalid port by our own will be much simpler. return [x for x in ports if not cls.INVALID_PORT_PATTERN.search(x)] # On MacOs with python3.6: type of espport is already utf8 if isinstance(espport, type(u'')): port_hint = espport else: port_hint = espport.decode('utf8') # If $ESPPORT is a valid port, make it appear first in the list if port_hint in ports: ports.remove(port_hint) return [port_hint] + ports # On macOS, user may set ESPPORT to /dev/tty.xxx while # pySerial lists only the corresponding /dev/cu.xxx port if sys.platform == 'darwin' and 'tty.' in port_hint: port_hint = port_hint.replace('tty.', 'cu.') if port_hint in ports: ports.remove(port_hint) return [port_hint] + ports return ports def lookup_pc_address(self, pc_addr): cmd = ['%saddr2line' % self.TOOLCHAIN_PREFIX, '-pfiaC', '-e', self.app.elf_file, pc_addr] ret = '' try: translation = subprocess.check_output(cmd) ret = translation.decode() except OSError: pass return ret @staticmethod def _queue_read_all(source_queue): output = [] while True: try: output.append(source_queue.get(timeout=0)) except _queue.Empty: break return output def _queue_copy(self, source_queue, dest_queue): data = self._queue_read_all(source_queue) for d in data: dest_queue.put(d) def _get_from_queue(self, queue_name): self_queue = getattr(self, queue_name) if self.receive_thread: recv_thread_queue = getattr(self.receive_thread, queue_name) self._queue_copy(recv_thread_queue, self_queue) return self._queue_read_all(self_queue) def stop_receive(self): if self.receive_thread: for name in ['performance_items', 'exceptions']: source_queue = getattr(self.receive_thread, name) dest_queue = getattr(self, name) self._queue_copy(source_queue, dest_queue) super(IDFDUT, self).stop_receive() def get_exceptions(self): """ Get exceptions detected by DUT receive thread. """ return self._get_from_queue('exceptions') def get_performance_items(self): """ DUT receive thread will automatic collect performance results with pattern ``[Performance][name]: value\n``. This method is used to get all performance results. :return: a list of performance items. """ return self._get_from_queue('performance_items') def close(self): super(IDFDUT, self).close() if not self.allow_dut_exception and self.get_exceptions(): raise IDFDUTException('DUT exception detected on {}'.format(self)) class ESP32DUT(IDFDUT): TARGET = 'esp32' TOOLCHAIN_PREFIX = 'xtensa-esp32-elf-' @classmethod def get_rom(cls): return targets.ESP32ROM class ESP32S2DUT(IDFDUT): TARGET = 'esp32s2' TOOLCHAIN_PREFIX = 'xtensa-esp32s2-elf-' @classmethod def get_rom(cls): return targets.ESP32S2ROM class ESP32S3DUT(IDFDUT): TARGET = 'esp32s3' TOOLCHAIN_PREFIX = 'xtensa-esp32s3-elf-' @classmethod def get_rom(cls): return targets.ESP32S3ROM def erase_partition(self, esp, partition): raise NotImplementedError() class ESP32C2DUT(IDFDUT): TARGET = 'esp32c2' TOOLCHAIN_PREFIX = 'riscv32-esp-elf-' @classmethod def get_rom(cls): return targets.ESP32C2ROM class ESP32C3DUT(IDFDUT): TARGET = 'esp32c3' TOOLCHAIN_PREFIX = 'riscv32-esp-elf-' @classmethod def get_rom(cls): return targets.ESP32C3ROM class ESP32C6DUT(IDFDUT): TARGET = 'esp32c6' TOOLCHAIN_PREFIX = 'riscv32-esp-elf-' @classmethod def get_rom(cls): return targets.ESP32C6ROM class ESP32H4DUT(IDFDUT): TARGET = 'esp32h4' TOOLCHAIN_PREFIX = 'riscv32-esp-elf-' @classmethod def get_rom(cls): return targets.ESP32H4ROM class ESP8266DUT(IDFDUT): TARGET = 'esp8266' TOOLCHAIN_PREFIX = 'xtensa-lx106-elf-' @classmethod def get_rom(cls): return targets.ESP8266ROM def get_target_by_rom_class(cls): for c in [ESP32DUT, ESP32S2DUT, ESP32S3DUT, ESP32C2DUT, ESP32C3DUT, ESP32C6DUT, ESP32H4DUT, ESP8266DUT, IDFQEMUDUT]: if c.get_rom() == cls: return c.TARGET return None class IDFQEMUDUT(IDFDUT): TARGET = None TOOLCHAIN_PREFIX = None ERASE_NVS = True DEFAULT_EXPECT_TIMEOUT = 30 # longer timeout, since app startup takes more time in QEMU (due to slow SHA emulation) QEMU_SERIAL_PORT = 3334 def __init__(self, name, port, log_file, app, allow_dut_exception=False, **kwargs): self.flash_image = tempfile.NamedTemporaryFile('rb+', suffix='.bin', prefix='qemu_flash_img') self.app = app self.flash_size = 4 * 1024 * 1024 self._write_flash_img() args = [ 'qemu-system-xtensa', '-nographic', '-machine', self.TARGET, '-drive', 'file={},if=mtd,format=raw'.format(self.flash_image.name), '-nic', 'user,model=open_eth', '-serial', 'tcp::{},server,nowait'.format(self.QEMU_SERIAL_PORT), '-S', '-global driver=timer.esp32.timg,property=wdt_disable,value=true'] # TODO(IDF-1242): generate a temporary efuse binary, pass it to QEMU if 'QEMU_BIOS_PATH' in os.environ: args += ['-L', os.environ['QEMU_BIOS_PATH']] self.qemu = pexpect.spawn(' '.join(args), timeout=self.DEFAULT_EXPECT_TIMEOUT) self.qemu.expect_exact(b'(qemu)') super(IDFQEMUDUT, self).__init__(name, port, log_file, app, allow_dut_exception=allow_dut_exception, **kwargs) def _write_flash_img(self): self.flash_image.seek(0) self.flash_image.write(b'\x00' * self.flash_size) for offs, path in self.app.flash_files: with open(path, 'rb') as flash_file: contents = flash_file.read() self.flash_image.seek(offs) self.flash_image.write(contents) self.flash_image.flush() @classmethod def get_rom(cls): return targets.ESP32ROM @classmethod def get_mac(cls, app, port): # TODO(IDF-1242): get this from QEMU/efuse binary return '11:22:33:44:55:66' @classmethod def confirm_dut(cls, port, **kwargs): return True, cls.TARGET def start_app(self, erase_nvs=ERASE_NVS): # TODO: implement erase_nvs # since the flash image is generated every time in the constructor, maybe this isn't needed... self.qemu.sendline(b'cont\n') self.qemu.expect_exact(b'(qemu)') def reset(self): self.qemu.sendline(b'system_reset\n') self.qemu.expect_exact(b'(qemu)') def erase_partition(self, partition): raise NotImplementedError('method erase_partition not implemented') def erase_flash(self): raise NotImplementedError('method erase_flash not implemented') def dump_flash(self, output_file, **kwargs): raise NotImplementedError('method dump_flash not implemented') @classmethod def list_available_ports(cls): return ['socket://localhost:{}'.format(cls.QEMU_SERIAL_PORT)] def close(self): super(IDFQEMUDUT, self).close() self.qemu.sendline(b'q\n') self.qemu.expect_exact(b'(qemu)') for _ in range(self.DEFAULT_EXPECT_TIMEOUT): if not self.qemu.isalive(): break time.sleep(1) else: self.qemu.terminate(force=True) class ESP32QEMUDUT(IDFQEMUDUT): TARGET = 'esp32' # type: ignore TOOLCHAIN_PREFIX = 'xtensa-esp32-elf-' # type: ignore class IDFFPGADUT(IDFDUT): TARGET = None # type: str TOOLCHAIN_PREFIX = None # type: str ERASE_NVS = True FLASH_ENCRYPT_SCHEME = None # type: str FLASH_ENCRYPT_CNT_KEY = None # type: str FLASH_ENCRYPT_CNT_VAL = 0 FLASH_ENCRYPT_PURPOSE = None # type: str SECURE_BOOT_EN_KEY = None # type: str SECURE_BOOT_EN_VAL = 0 FLASH_SECTOR_SIZE = 4096 def __init__(self, name, port, log_file, app, allow_dut_exception=False, efuse_reset_port=None, **kwargs): super(IDFFPGADUT, self).__init__(name, port, log_file, app, allow_dut_exception=allow_dut_exception, **kwargs) self.esp = self.get_rom()(port) self.efuses = None self.efuse_operations = None self.efuse_reset_port = efuse_reset_port @classmethod def get_rom(cls): raise NotImplementedError('This is an abstraction class, method not defined.') def erase_partition(self, esp, partition): raise NotImplementedError() def enable_efuses(self): # We use an extra COM port to reset the efuses on FPGA. # Connect DTR pin of the COM port to the efuse reset pin on daughter board # Set EFUSEPORT env variable to the extra COM port if not self.efuse_reset_port: raise RuntimeError('EFUSEPORT not specified') # Stop any previous serial port operation self.stop_receive() if self.secure_boot_en: self.esp.connect() self.efuses, self.efuse_operations = espefuse.get_efuses(self.esp, False, False, True) def burn_efuse(self, field, val): if not self.efuse_operations: self.enable_efuses() BurnEfuseArgs = collections.namedtuple('burn_efuse_args', ['name_value_pairs']) args = BurnEfuseArgs({field: val}) self.efuse_operations.burn_efuse(self.esp, self.efuses, args) def burn_efuse_key(self, key, purpose, block): if not self.efuse_operations: self.enable_efuses() BurnKeyArgs = collections.namedtuple('burn_key_args', ['keyfile', 'keypurpose', 'block', 'force_write_always', 'no_write_protect', 'no_read_protect']) args = BurnKeyArgs([key], [purpose], [block], False, False, False) self.efuse_operations.burn_key(self.esp, self.efuses, args) def burn_efuse_key_digest(self, key, purpose, block): if not self.efuse_operations: self.enable_efuses() BurnDigestArgs = collections.namedtuple('burn_key_digest_args', ['keyfile', 'keypurpose', 'block', 'force_write_always', 'no_write_protect', 'no_read_protect']) args = BurnDigestArgs([open(key, 'rb')], [purpose], [block], False, False, True) self.efuse_operations.burn_key_digest(self.esp, self.efuses, args) def reset_efuses(self): if not self.efuse_reset_port: raise RuntimeError('EFUSEPORT not specified') with serial.Serial(self.efuse_reset_port) as efuseport: print('Resetting efuses') efuseport.dtr = 0 self.port_inst.setRTS(1) self.port_inst.setRTS(0) time.sleep(1) efuseport.dtr = 1 self.efuse_operations = None self.efuses = None def sign_data(self, data_file, key_files, version, append_signature=0): SignDataArgs = collections.namedtuple('sign_data_args', ['datafile','keyfile','output', 'version', 'append_signatures']) outfile = tempfile.NamedTemporaryFile() args = SignDataArgs(data_file, key_files, outfile.name, str(version), append_signature) espsecure.sign_data(args) outfile.seek(0) return outfile.read() class ESP32C3FPGADUT(IDFFPGADUT): TARGET = 'esp32c3' TOOLCHAIN_PREFIX = 'riscv32-esp-elf-' FLASH_ENCRYPT_SCHEME = 'AES-XTS' FLASH_ENCRYPT_CNT_KEY = 'SPI_BOOT_CRYPT_CNT' FLASH_ENCRYPT_CNT_VAL = 1 FLASH_ENCRYPT_PURPOSE = 'XTS_AES_128_KEY' SECURE_BOOT_EN_KEY = 'SECURE_BOOT_EN' SECURE_BOOT_EN_VAL = 1 @classmethod def get_rom(cls): return targets.ESP32C3ROM def erase_partition(self, esp, partition): raise NotImplementedError() def flash_encrypt_burn_cnt(self): self.burn_efuse(self.FLASH_ENCRYPT_CNT_KEY, self.FLASH_ENCRYPT_CNT_VAL) def flash_encrypt_burn_key(self, key, block=0): self.burn_efuse_key(key, self.FLASH_ENCRYPT_PURPOSE, 'BLOCK_KEY%d' % block) def flash_encrypt_get_scheme(self): return self.FLASH_ENCRYPT_SCHEME def secure_boot_burn_en_bit(self): self.burn_efuse(self.SECURE_BOOT_EN_KEY, self.SECURE_BOOT_EN_VAL) def secure_boot_burn_digest(self, digest, key_index=0, block=0): self.burn_efuse_key_digest(digest, 'SECURE_BOOT_DIGEST%d' % key_index, 'BLOCK_KEY%d' % block) @classmethod def confirm_dut(cls, port, **kwargs): return True, cls.TARGET class ESP32S3FPGADUT(IDFFPGADUT): TARGET = 'esp32s3' TOOLCHAIN_PREFIX = 'xtensa-esp32s3-elf-' FLASH_ENCRYPT_SCHEME = 'AES-XTS' FLASH_ENCRYPT_CNT_KEY = 'SPI_BOOT_CRYPT_CNT' FLASH_ENCRYPT_CNT_VAL = 1 FLASH_ENCRYPT_PURPOSE = 'XTS_AES_128_KEY' SECURE_BOOT_EN_KEY = 'SECURE_BOOT_EN' SECURE_BOOT_EN_VAL = 1 @classmethod def get_rom(cls): return targets.ESP32S3ROM def erase_partition(self, esp, partition): raise NotImplementedError() def flash_encrypt_burn_cnt(self): self.burn_efuse(self.FLASH_ENCRYPT_CNT_KEY, self.FLASH_ENCRYPT_CNT_VAL) def flash_encrypt_burn_key(self, key, block=0): self.burn_efuse_key(key, self.FLASH_ENCRYPT_PURPOSE, 'BLOCK_KEY%d' % block) def flash_encrypt_get_scheme(self): return self.FLASH_ENCRYPT_SCHEME def secure_boot_burn_en_bit(self): self.burn_efuse(self.SECURE_BOOT_EN_KEY, self.SECURE_BOOT_EN_VAL) def secure_boot_burn_digest(self, digest, key_index=0, block=0): self.burn_efuse_key_digest(digest, 'SECURE_BOOT_DIGEST%d' % key_index, 'BLOCK_KEY%d' % block) @classmethod def confirm_dut(cls, port, **kwargs): return True, cls.TARGET