// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include static const char *TAG = "esp_image"; #define SIXTEEN_MB 0x1000000 #define ESP_ROM_CHECKSUM_INITIAL 0xEF /* Headroom to ensure between stack SP (at time of checking) and data loaded from flash */ #define STACK_LOAD_HEADROOM 4096 /* Return true if load_addr is an address the bootloader should load into */ static bool should_load(uint32_t load_addr); /* Return true if load_addr is an address the bootloader should map via flash cache */ static bool should_map(uint32_t load_addr); /* Load or verify a segment */ static esp_err_t process_segment(int index, uint32_t flash_addr, esp_image_segment_header_t *header, bool silent, bool do_load, uint32_t *checksum); /* Verify the main image header */ static esp_err_t verify_image_header(uint32_t src_addr, const esp_image_header_t *image, bool silent); /* Verify a segment header */ static esp_err_t verify_segment_header(int index, const esp_image_segment_header_t *segment, uint32_t segment_data_offs, bool silent); /* Log-and-fail macro for use in esp_image_load */ #define FAIL_LOAD(...) do { \ if (!silent) { \ ESP_LOGE(TAG, __VA_ARGS__); \ } \ goto err; \ } \ while(0) esp_err_t esp_image_load(esp_image_load_mode_t mode, const esp_partition_pos_t *part, esp_image_metadata_t *data) { #ifdef BOOTLOADER_BUILD bool do_load = (mode == ESP_IMAGE_LOAD); #else bool do_load = false; // Can't load the image in app mode #endif bool silent = (mode == ESP_IMAGE_VERIFY_SILENT); esp_err_t err = ESP_OK; // checksum the image a word at a time. This shaves 30-40ms per MB of image size uint32_t checksum_word = ESP_ROM_CHECKSUM_INITIAL; if (data == NULL || part == NULL) { return ESP_ERR_INVALID_ARG; } if (part->size > SIXTEEN_MB) { err = ESP_ERR_INVALID_ARG; FAIL_LOAD("partition size %d invalid, larger than 16MB", part->size); } bzero(data, sizeof(esp_image_metadata_t)); data->start_addr = part->offset; ESP_LOGD(TAG, "reading image header @ 0x%x", data->start_addr); err = bootloader_flash_read(data->start_addr, &data->image, sizeof(esp_image_header_t), true); if (err != ESP_OK) { goto err; } ESP_LOGD(TAG, "image header: 0x%02x 0x%02x 0x%02x 0x%02x %08x", data->image.magic, data->image.segment_count, data->image.spi_mode, data->image.spi_size, data->image.entry_addr); err = verify_image_header(data->start_addr, &data->image, silent); if (err != ESP_OK) { goto err; } if (data->image.segment_count > ESP_IMAGE_MAX_SEGMENTS) { FAIL_LOAD("image at 0x%x segment count %d exceeds max %d", data->start_addr, data->image.segment_count, ESP_IMAGE_MAX_SEGMENTS); } uint32_t next_addr = data->start_addr + sizeof(esp_image_header_t); for(int i = 0; i < data->image.segment_count && err == ESP_OK; i++) { esp_image_segment_header_t *header = &data->segments[i]; ESP_LOGV(TAG, "loading segment header %d at offset 0x%x", i, next_addr); err = process_segment(i, next_addr, header, silent, do_load, &checksum_word); if (err != ESP_OK) { goto err; } next_addr += sizeof(esp_image_segment_header_t); data->segment_data[i] = next_addr; next_addr += header->data_len; } // Segments all loaded, verify length uint32_t end_addr = next_addr; if (end_addr < data->start_addr) { FAIL_LOAD("image offset has wrapped"); } uint32_t length = end_addr - data->start_addr; length = length + 1; // Add a byte for the checksum length = (length + 15) & ~15; // Pad to next full 16 byte block if (length > part->size) { FAIL_LOAD("Image length %d doesn't fit in partition length %d", length, part->size); } // Verify checksum uint32_t buf[16/sizeof(uint32_t)]; err = bootloader_flash_read(data->start_addr + length - 16, buf, 16, true); uint8_t calc = ((uint8_t *)buf)[15]; uint8_t checksum = (checksum_word >> 24) ^ (checksum_word >> 16) ^ (checksum_word >> 8) ^ (checksum_word >> 0); if (err != ESP_OK || checksum != calc) { FAIL_LOAD("Checksum failed. Calculated 0x%x read 0x%x", checksum, calc); } data->image_length = length; // Success! return ESP_OK; err: if (err == ESP_OK) { err = ESP_ERR_IMAGE_INVALID; } // Prevent invalid/incomplete data leaking out bzero(data, sizeof(esp_image_metadata_t)); return err; } static esp_err_t verify_image_header(uint32_t src_addr, const esp_image_header_t *image, bool silent) { esp_err_t err = ESP_OK; if (image->magic != ESP_IMAGE_HEADER_MAGIC) { if (!silent) { ESP_LOGE(TAG, "image at 0x%x has invalid magic byte", src_addr); } err = ESP_ERR_IMAGE_INVALID; } if (!silent) { if (image->spi_mode > ESP_IMAGE_SPI_MODE_SLOW_READ) { ESP_LOGW(TAG, "image at 0x%x has invalid SPI mode %d", src_addr, image->spi_mode); } if (image->spi_speed > ESP_IMAGE_SPI_SPEED_80M) { ESP_LOGW(TAG, "image at 0x%x has invalid SPI speed %d", src_addr, image->spi_speed); } if (image->spi_size > ESP_IMAGE_FLASH_SIZE_MAX) { ESP_LOGW(TAG, "image at 0x%x has invalid SPI size %d", src_addr, image->spi_size); } } return err; } static esp_err_t process_segment(int index, uint32_t flash_addr, esp_image_segment_header_t *header, bool silent, bool do_load, uint32_t *checksum) { esp_err_t err; /* read segment header */ err = bootloader_flash_read(flash_addr, header, sizeof(esp_image_segment_header_t), true); if (err != ESP_OK) { return err; } intptr_t load_addr = header->load_addr; uint32_t data_len = header->data_len; uint32_t data_addr = flash_addr + sizeof(esp_image_segment_header_t); ESP_LOGV(TAG, "segment data length 0x%x data starts 0x%x", data_len, data_addr); err = verify_segment_header(index, header, data_addr, silent); if (err != ESP_OK) { return err; } if (data_len % 4 != 0) { FAIL_LOAD("unaligned segment length 0x%x", data_len); } bool is_mapping = should_map(load_addr); do_load = do_load && should_load(load_addr); if (!silent) { ESP_LOGI(TAG, "segment %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", index, data_addr, load_addr, data_len, data_len, (do_load)?"load":(is_mapping)?"map":""); } if (do_load) { /* Before loading segment, check it doesn't clobber bootloader RAM... */ uint32_t end_addr = load_addr + data_len; if (end_addr < 0x40000000) { intptr_t sp = (intptr_t)get_sp(); if (end_addr > sp - STACK_LOAD_HEADROOM) { ESP_LOGE(TAG, "Segment %d end address 0x%08x too high (bootloader stack 0x%08x liimit 0x%08x)", index, end_addr, sp, sp - STACK_LOAD_HEADROOM); return ESP_ERR_IMAGE_INVALID; } } } const void *data = bootloader_mmap(data_addr, data_len); if(!data) { ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", data_addr, data_len); return ESP_FAIL; } const uint32_t *checksum_from; if (do_load) { memcpy((void *)load_addr, data, data_len); checksum_from = (const uint32_t *)load_addr; } else { checksum_from = (const uint32_t *)data; } // Update checksum, either from RAM we just loaded or from flash for (const uint32_t *c = checksum_from; c < checksum_from + (data_len/sizeof(uint32_t)); c++) { *checksum ^= *c; } bootloader_munmap(data); return ESP_OK; err: if (err == ESP_OK) { err = ESP_ERR_IMAGE_INVALID; } return err; } static esp_err_t verify_segment_header(int index, const esp_image_segment_header_t *segment, uint32_t segment_data_offs, bool silent) { if ((segment->data_len & 3) != 0 || segment->data_len >= SIXTEEN_MB) { if (!silent) { ESP_LOGE(TAG, "invalid segment length 0x%x", segment->data_len); } return ESP_ERR_IMAGE_INVALID; } uint32_t load_addr = segment->load_addr; /* Check that flash cache mapped segment aligns correctly from flash to its mapped address, relative to the 64KB page mapping size. */ ESP_LOGV(TAG, "segment %d map_segment %d segment_data_offs 0x%x load_addr 0x%x", index, map_segment, segment_data_offs, load_addr); if (should_map(load_addr) && ((segment_data_offs % SPI_FLASH_MMU_PAGE_SIZE) != (load_addr % SPI_FLASH_MMU_PAGE_SIZE))) { if (!silent) { ESP_LOGE(TAG, "Segment %d has load address 0x%08x, doesn't match segment data at 0x%08x", index, load_addr, segment_data_offs); } return ESP_ERR_IMAGE_INVALID; } return ESP_OK; } static bool should_map(uint32_t load_addr) { return (load_addr >= SOC_IROM_LOW && load_addr < SOC_IROM_HIGH) || (load_addr >= SOC_DROM_LOW && load_addr < SOC_DROM_HIGH); } static bool should_load(uint32_t load_addr) { /* Reload the RTC memory segments whenever a non-deepsleep reset is occurring */ bool load_rtc_memory = rtc_get_reset_reason(0) != DEEPSLEEP_RESET; if (should_map(load_addr)) { return false; } if (load_addr < 0x10000000) { // Reserved for non-loaded addresses. // Current reserved values are // 0x0 (padding block) // 0x4 (unused, but reserved for an MD5 block) return false; } if (!load_rtc_memory) { if (load_addr >= SOC_RTC_IRAM_LOW && load_addr < SOC_RTC_IRAM_HIGH) { ESP_LOGD(TAG, "Skipping RTC code segment at 0x%08x\n", load_addr); return false; } if (load_addr >= SOC_RTC_DATA_LOW && load_addr < SOC_RTC_DATA_HIGH) { ESP_LOGD(TAG, "Skipping RTC data segment at 0x%08x\n", load_addr); return false; } } return true; } esp_err_t esp_image_verify_bootloader(uint32_t *length) { esp_image_metadata_t data; const esp_partition_pos_t bootloader_part = { .offset = ESP_BOOTLOADER_OFFSET, .size = ESP_PARTITION_TABLE_OFFSET - ESP_BOOTLOADER_OFFSET, }; esp_err_t err = esp_image_load(ESP_IMAGE_VERIFY, &bootloader_part, &data); if (length != NULL) { *length = (err == ESP_OK) ? data.image_length : 0; } return err; }