/* Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip). */ // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "sdkconfig.h" #include "string.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_types.h" #include "esp_log.h" #include "spiram_psram.h" #include "esp32s2beta/rom/ets_sys.h" #include "esp32s2beta/rom/spi_flash.h" #include "esp32s2beta/rom/gpio.h" #include "esp32s2beta/rom/cache.h" #include "soc/io_mux_reg.h" #include "soc/dport_reg.h" #include "soc/apb_ctrl_reg.h" #include "soc/gpio_sig_map.h" #include "soc/efuse_reg.h" #include "driver/gpio.h" #include "driver/spi_common.h" #include "driver/periph_ctrl.h" #if CONFIG_SPIRAM #include "soc/rtc.h" //Commands for PSRAM chip #define PSRAM_READ 0x03 #define PSRAM_FAST_READ 0x0B #define PSRAM_FAST_READ_DUMMY 0x3 #define PSRAM_FAST_READ_QUAD 0xEB #define PSRAM_FAST_READ_QUAD_DUMMY 0x5 #define PSRAM_WRITE 0x02 #define PSRAM_QUAD_WRITE 0x38 #define PSRAM_ENTER_QMODE 0x35 #define PSRAM_EXIT_QMODE 0xF5 #define PSRAM_RESET_EN 0x66 #define PSRAM_RESET 0x99 #define PSRAM_SET_BURST_LEN 0xC0 #define PSRAM_DEVICE_ID 0x9F typedef enum { PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */ PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */ } psram_clk_mode_t; #define PSRAM_ID_KGD_M 0xff #define PSRAM_ID_KGD_S 8 #define PSRAM_ID_KGD 0x5d #define PSRAM_ID_EID_M 0xff #define PSRAM_ID_EID_S 16 #define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M) #define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M) #define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD) // PSRAM_EID = 0x26 or 0x4x ----> 64MBit psram // PSRAM_EID = 0x20 ------------> 32MBit psram #define PSRAM_IS_64MBIT(id) ((PSRAM_EID(id) == 0x26) || ((PSRAM_EID(id) & 0xf0) == 0x40)) #define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20) // IO-pins for PSRAM. These need to be in the VDD_SIO power domain because all chips we // currently support are 1.8V parts. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines // hardcode the flash pins as well, making this code incompatible with either a setup // that has the flash on non-standard pins or ESP32s with built-in flash. #define FLASH_CLK_IO SPI_CLK_GPIO_NUM //Psram clock is a delayed version of this in 40MHz mode #define FLASH_CS_IO SPI_CS0_GPIO_NUM #define PSRAM_CS_IO 26 #define PSRAM_SPIQ_IO SPI_Q_GPIO_NUM #define PSRAM_SPID_IO SPI_D_GPIO_NUM #define PSRAM_SPIWP_IO SPI_WP_GPIO_NUM #define PSRAM_SPIHD_IO SPI_HD_GPIO_NUM #define PSRAM_INTERNAL_IO_28 28 #define PSRAM_INTERNAL_IO_29 29 #define PSRAM_IO_MATRIX_DUMMY_20M 0 #define PSRAM_IO_MATRIX_DUMMY_40M 0 #define PSRAM_IO_MATRIX_DUMMY_80M 0 #define _SPI_CACHE_PORT 0 #define _SPI_FLASH_PORT 1 #define _SPI_80M_CLK_DIV 1 #define _SPI_40M_CLK_DIV 2 #define _SPI_20M_CLK_DIV 4 static const char* TAG = "psram"; typedef enum { PSRAM_SPI_1 = 0x1, PSRAM_SPI_2, PSRAM_SPI_3, PSRAM_SPI_MAX , } psram_spi_num_t; static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX; static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK; static uint32_t s_psram_id = 0; /* dummy_len_plus values defined in ROM for SPI flash configuration */ extern uint8_t g_rom_spiflash_dummy_len_plus[]; static int extra_dummy = 0; typedef enum { PSRAM_CMD_QPI, PSRAM_CMD_SPI, } psram_cmd_mode_t; typedef struct { uint16_t cmd; /*!< Command value */ uint16_t cmdBitLen; /*!< Command byte length*/ uint32_t *addr; /*!< Point to address value*/ uint16_t addrBitLen; /*!< Address byte length*/ uint32_t *txData; /*!< Point to send data buffer*/ uint16_t txDataBitLen; /*!< Send data byte length.*/ uint32_t *rxData; /*!< Point to recevie data buffer*/ uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/ uint32_t dummyBitLen; } psram_cmd_t; static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode); static void psram_clear_spi_fifo(psram_spi_num_t spi_num) { int i; for (i = 0; i < 16; i++) { WRITE_PERI_REG(SPI_MEM_W0_REG(spi_num)+i*4, 0); } } //set basic SPI write mode static void psram_set_basic_write_mode(psram_spi_num_t spi_num) { CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QIO); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DIO); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QUAD); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DUAL); } //set QPI write mode static void psram_set_qio_write_mode(psram_spi_num_t spi_num) { SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QIO); SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DIO); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_QUAD); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_FWRITE_DUAL); } //set QPI read mode static void psram_set_qio_read_mode(psram_spi_num_t spi_num) { SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QIO); SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QUAD); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DUAL); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DIO); } //set SPI read mode static void psram_set_basic_read_mode(psram_spi_num_t spi_num) { CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QIO); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FCMD_QUAD_M); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_QUAD); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DUAL); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_FREAD_DIO); } //start sending cmd/addr and optionally, receiving data static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen, psram_cmd_mode_t cmd_mode) { //get cs1 CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS1_DIS_M); SET_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS0_DIS_M); uint32_t mode_backup = (READ_PERI_REG(SPI_MEM_USER_REG(spi_num)) >> SPI_MEM_FWRITE_DUAL_S) & 0xf; #ifdef FAKE_QPI uint32_t rd_mode_backup = READ_PERI_REG(SPI_MEM_CTRL_REG(spi_num)) & (SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_QIO_M); #else uint32_t rd_mode_backup = READ_PERI_REG(SPI_MEM_CTRL_REG(spi_num)) & (SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_QIO_M | SPI_MEM_FCMD_QUAD); #endif if (cmd_mode == PSRAM_CMD_SPI) { psram_set_basic_write_mode(spi_num); psram_set_basic_read_mode(spi_num); } else if (cmd_mode == PSRAM_CMD_QPI) { psram_set_qio_write_mode(spi_num); psram_set_qio_read_mode(spi_num); } // Start send data SET_PERI_REG_MASK(SPI_MEM_CMD_REG(spi_num), SPI_MEM_USR); while ((READ_PERI_REG(SPI_MEM_CMD_REG(spi_num)) & SPI_MEM_USR)); //recover spi mode SET_PERI_REG_BITS(SPI_MEM_USER_REG(spi_num), (pRxData?SPI_MEM_FWRITE_DUAL_M:0xf), mode_backup, SPI_MEM_FWRITE_DUAL_S); #ifdef FAKE_QPI CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), (SPI_MEM_FREAD_DIO_M|SPI_MEM_FREAD_DUAL_M|SPI_MEM_FREAD_QUAD_M|SPI_MEM_FREAD_QIO_M)); #else CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), (SPI_MEM_FREAD_DIO_M|SPI_MEM_FREAD_DUAL_M|SPI_MEM_FREAD_QUAD_M|SPI_MEM_FREAD_QIO_M|SPI_MEM_FCMD_QUAD)); #endif SET_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), rd_mode_backup); //return cs to cs0 SET_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS1_DIS_M); CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(PSRAM_SPI_1), SPI_MEM_CS0_DIS_M); if (pRxData) { int idx = 0; // Read data out do { *pRxData++ = READ_PERI_REG(SPI_MEM_W0_REG(spi_num) + (idx << 2)); } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0))); } } static uint32_t backup_usr[3]; static uint32_t backup_usr1[3]; static uint32_t backup_usr2[3]; //setup spi command/addr/data/dummy in user mode static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData) { while (READ_PERI_REG(SPI_MEM_CMD_REG(spi_num)) & SPI_MEM_USR); backup_usr[spi_num]=READ_PERI_REG(SPI_MEM_USER_REG(spi_num)); backup_usr1[spi_num]=READ_PERI_REG(SPI_MEM_USER1_REG(spi_num)); backup_usr2[spi_num]=READ_PERI_REG(SPI_MEM_USER2_REG(spi_num)); // Set command by user. if (pInData->cmdBitLen != 0) { // Max command length 16 bits. SET_PERI_REG_BITS(SPI_MEM_USER2_REG(spi_num), SPI_MEM_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1, SPI_MEM_USR_COMMAND_BITLEN_S); // Enable command SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_COMMAND); // Load command,bit15-0 is cmd value. SET_PERI_REG_BITS(SPI_MEM_USER2_REG(spi_num), SPI_MEM_USR_COMMAND_VALUE, pInData->cmd, SPI_MEM_USR_COMMAND_VALUE_S); } else { CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_COMMAND); SET_PERI_REG_BITS(SPI_MEM_USER2_REG(spi_num), SPI_MEM_USR_COMMAND_BITLEN, 0, SPI_MEM_USR_COMMAND_BITLEN_S); } // Set Address by user. if (pInData->addrBitLen != 0) { SET_PERI_REG_BITS(SPI_MEM_USER1_REG(spi_num), SPI_MEM_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_MEM_USR_ADDR_BITLEN_S); // Enable address SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_ADDR); // Set address WRITE_PERI_REG(SPI_MEM_ADDR_REG(spi_num), *pInData->addr); } else { CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_ADDR); SET_PERI_REG_BITS(SPI_MEM_USER1_REG(spi_num), SPI_MEM_USR_ADDR_BITLEN, 0, SPI_MEM_USR_ADDR_BITLEN_S); } // Set data by user. uint32_t* p_tx_val = pInData->txData; if (pInData->txDataBitLen != 0) { // Enable MOSI SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MOSI); // Load send buffer int len = (pInData->txDataBitLen + 31) / 32; if (p_tx_val != NULL) { memcpy((void*)SPI_MEM_W0_REG(spi_num), p_tx_val, len * 4); } // Set data send buffer length.Max data length 64 bytes. SET_PERI_REG_BITS(SPI_MEM_MOSI_DLEN_REG(spi_num), SPI_MEM_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1), SPI_MEM_USR_MOSI_DBITLEN_S); } else { CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MOSI); SET_PERI_REG_BITS(SPI_MEM_MOSI_DLEN_REG(spi_num), SPI_MEM_USR_MOSI_DBITLEN, 0, SPI_MEM_USR_MOSI_DBITLEN_S); } // Set rx data by user. if (pInData->rxDataBitLen != 0) { // Enable MOSI SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MISO); // Set data send buffer length.Max data length 64 bytes. SET_PERI_REG_BITS(SPI_MEM_MISO_DLEN_REG(spi_num), SPI_MEM_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1), SPI_MEM_USR_MISO_DBITLEN_S); } else { CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_USR_MISO); SET_PERI_REG_BITS(SPI_MEM_MISO_DLEN_REG(spi_num), SPI_MEM_USR_MISO_DBITLEN, 0, SPI_MEM_USR_MISO_DBITLEN_S); } if (pInData->dummyBitLen != 0) { SET_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY); // dummy en SET_PERI_REG_BITS(SPI_MEM_USER1_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY } else { CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY); // dummy en SET_PERI_REG_BITS(SPI_MEM_USER1_REG(PSRAM_SPI_1), SPI_MEM_USR_DUMMY_CYCLELEN_V, 0, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY } return 0; } void psram_cmd_end(int spi_num) { while (READ_PERI_REG(SPI_MEM_CMD_REG(spi_num)) & SPI_MEM_USR); WRITE_PERI_REG(SPI_MEM_USER_REG(spi_num), backup_usr[spi_num]); WRITE_PERI_REG(SPI_MEM_USER1_REG(spi_num), backup_usr1[spi_num]); WRITE_PERI_REG(SPI_MEM_USER2_REG(spi_num), backup_usr2[spi_num]); } #ifdef FAKE_QPI //exit QPI mode(set back to SPI mode) static void psram_disable_qio_mode(psram_spi_num_t spi_num) { psram_cmd_t ps_cmd; uint32_t cmd_exit_qpi; cmd_exit_qpi = PSRAM_EXIT_QMODE; ps_cmd.txDataBitLen = 8; if (s_clk_mode == PSRAM_CLK_MODE_DCLK) { switch (s_psram_mode) { case PSRAM_CACHE_S80M: break; case PSRAM_CACHE_S40M: default: cmd_exit_qpi = PSRAM_EXIT_QMODE << 8; ps_cmd.txDataBitLen = 16; break; } } ps_cmd.txData = &cmd_exit_qpi; ps_cmd.cmd = 0; ps_cmd.cmdBitLen = 0; ps_cmd.addr = 0; ps_cmd.addrBitLen = 0; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI); psram_cmd_end(spi_num); } //read psram id static void psram_read_id(uint32_t* dev_id) { psram_spi_num_t spi_num = PSRAM_SPI_1; psram_disable_qio_mode(spi_num); uint32_t dummy_bits = 0 + extra_dummy; psram_cmd_t ps_cmd; uint32_t addr = 0; ps_cmd.addrBitLen = 3 * 8; ps_cmd.cmd = PSRAM_DEVICE_ID; ps_cmd.cmdBitLen = 8; if (s_clk_mode == PSRAM_CLK_MODE_DCLK) { switch (s_psram_mode) { case PSRAM_CACHE_S80M: break; case PSRAM_CACHE_S40M: default: ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle ps_cmd.cmd = 0; addr = (PSRAM_DEVICE_ID << 24) | 0; ps_cmd.addrBitLen = 4 * 8; break; } } ps_cmd.addr = &addr; ps_cmd.txDataBitLen = 0; ps_cmd.txData = NULL; ps_cmd.rxDataBitLen = 4 * 8; ps_cmd.rxData = dev_id; ps_cmd.dummyBitLen = dummy_bits; psram_cmd_config(spi_num, &ps_cmd); psram_clear_spi_fifo(spi_num); psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI); psram_cmd_end(spi_num); } //enter QPI mode static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num) { psram_cmd_t ps_cmd; uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0; ps_cmd.cmdBitLen = 0; if (s_clk_mode == PSRAM_CLK_MODE_DCLK) { switch (s_psram_mode) { case PSRAM_CACHE_S80M: break; case PSRAM_CACHE_S40M: default: ps_cmd.cmdBitLen = 2; break; } } ps_cmd.cmd = 0; ps_cmd.addr = &addr; ps_cmd.addrBitLen = 8; ps_cmd.txData = NULL; ps_cmd.txDataBitLen = 0; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI); psram_cmd_end(spi_num); return ESP_OK; } #else /* FAKE_QPI */ //exit QPI mode(set back to SPI mode) static void psram_disable_qio_mode(psram_spi_num_t spi_num) { psram_cmd_t ps_cmd; ps_cmd.txData = NULL; ps_cmd.txDataBitLen = 0; ps_cmd.cmd = PSRAM_EXIT_QMODE; ps_cmd.cmdBitLen = 8; ps_cmd.addr = 0; ps_cmd.addrBitLen = 0; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI); psram_cmd_end(spi_num); } //switch psram burst length(32 bytes or 1024 bytes) //datasheet says it should be 1024 bytes by default static void psram_set_wrap_burst_length(psram_spi_num_t spi_num, psram_cmd_mode_t mode) { psram_cmd_t ps_cmd; ps_cmd.cmd = 0xC0; ps_cmd.cmdBitLen = 8; ps_cmd.addr = 0; ps_cmd.addrBitLen = 0; ps_cmd.txData = NULL; ps_cmd.txDataBitLen = 0; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, mode); psram_cmd_end(spi_num); } //send reset command to psram, in spi mode static void psram_reset_mode(psram_spi_num_t spi_num) { psram_cmd_t ps_cmd; ps_cmd.txData = NULL; ps_cmd.txDataBitLen = 0; ps_cmd.addr = NULL; ps_cmd.addrBitLen = 0; ps_cmd.cmd = PSRAM_RESET_EN; ps_cmd.cmdBitLen = 8; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI); psram_cmd_end(spi_num); memset(&ps_cmd, 0, sizeof(ps_cmd)); ps_cmd.txData = NULL; ps_cmd.txDataBitLen = 0; ps_cmd.addr = NULL; ps_cmd.addrBitLen = 0; ps_cmd.cmd = PSRAM_RESET; ps_cmd.cmdBitLen = 8; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI); psram_cmd_end(spi_num); } esp_err_t psram_enable_wrap(uint32_t wrap_size) { switch (wrap_size) { case 32: psram_set_wrap_burst_length(PSRAM_SPI_1, PSRAM_CMD_QPI); return ESP_OK; case 16: case 64: default: return ESP_FAIL; } } bool psram_support_wrap_size(uint32_t wrap_size) { switch (wrap_size) { case 0: case 32: return true; case 16: case 64: default: return false; } } static void psram_read_id(uint32_t* dev_id) { psram_spi_num_t spi_num = PSRAM_SPI_1; psram_disable_qio_mode(spi_num); uint32_t dummy_bits = 0; uint32_t addr = 0; psram_cmd_t ps_cmd; switch (s_psram_mode) { case PSRAM_CACHE_S80M: dummy_bits = 0 + extra_dummy; break; case PSRAM_CACHE_S40M: case PSRAM_CACHE_S26M: case PSRAM_CACHE_S20M: default: dummy_bits = 0 + extra_dummy; break; } ps_cmd.cmd = PSRAM_DEVICE_ID; ps_cmd.cmdBitLen = 8; ps_cmd.addr = &addr; ps_cmd.addrBitLen = 24; ps_cmd.txDataBitLen = 0; ps_cmd.txData = NULL; ps_cmd.rxDataBitLen = 3 * 8; ps_cmd.rxData = dev_id; ps_cmd.dummyBitLen = dummy_bits; psram_cmd_config(spi_num, &ps_cmd); psram_clear_spi_fifo(spi_num); psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI); psram_cmd_end(spi_num); } //enter QPI mode static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num) { psram_cmd_t ps_cmd; ps_cmd.cmd = PSRAM_ENTER_QMODE; ps_cmd.cmdBitLen = 8; //this two bits is used to delay 2 clock cycle ps_cmd.addr = NULL; ps_cmd.addrBitLen = 0; ps_cmd.txData = NULL; ps_cmd.txDataBitLen = 0; ps_cmd.rxData = NULL; ps_cmd.rxDataBitLen = 0; ps_cmd.dummyBitLen = 0; psram_cmd_config(spi_num, &ps_cmd); psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI); psram_cmd_end(spi_num); return ESP_OK; } #endif /* FAKE_QPI */ //spi param init for psram void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode) { uint8_t k; SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_CS_SETUP); #warning "psram_spi_init: part of configuration missing for esp32s2beta" #if 0 // SPI_CPOL & SPI_CPHA CLEAR_PERI_REG_MASK(SPI_MEM_MISC_REG(spi_num), SPI_MEM_CK_IDLE_EDGE); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_CK_OUT_EDGE); // SPI bit order CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_WR_BIT_ORDER); CLEAR_PERI_REG_MASK(SPI_MEM_CTRL_REG(spi_num), SPI_MEM_RD_BIT_ORDER); // SPI bit order CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_DOUTDIN); #endif // May be not must to do. WRITE_PERI_REG(SPI_MEM_USER1_REG(spi_num), 0); #if 0 // SPI mode type CLEAR_PERI_REG_MASK(SPI_MEM_SLAVE_REG(spi_num), SPI_MEM_SLAVE_MODE); #endif // Set SPI speed for non-80M mode. (80M mode uses APB clock directly.) if (mode!=PSRAM_CACHE_S80M) { k = 2; //Main divider. Divide by 2 so we get 40MHz //clear bit 31, set SPI clock div CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_REG(spi_num), SPI_MEM_CLK_EQU_SYSCLK); WRITE_PERI_REG(SPI_MEM_CLOCK_REG(spi_num), (((k - 1) & SPI_MEM_CLKCNT_N) << SPI_MEM_CLKCNT_N_S) | ((((k + 1) / 2 - 1) & SPI_MEM_CLKCNT_H) << SPI_MEM_CLKCNT_H_S) | //50% duty cycle (((k - 1) & SPI_MEM_CLKCNT_L) << SPI_MEM_CLKCNT_L_S)); } // Enable MOSI SET_PERI_REG_MASK(SPI_MEM_USER_REG(spi_num), SPI_MEM_CS_SETUP | SPI_MEM_CS_HOLD | SPI_MEM_USR_MOSI); memset((void*)SPI_MEM_W0_REG(spi_num), 0, 16 * 4); } /* * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA. * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode. */ static void IRAM_ATTR psram_gpio_config(psram_cache_mode_t mode) { int spi_cache_dummy = 0; uint32_t rd_mode_reg = READ_PERI_REG(SPI_MEM_CTRL_REG(0)); if (rd_mode_reg & (SPI_MEM_FREAD_QIO_M | SPI_MEM_FREAD_DIO_M)) { spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN; } else if (rd_mode_reg & (SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_DUAL_M)) { spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; } else { spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; } // In bootloader, all the signals are already configured, // We keep the following code in case the bootloader is some older version. gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0); gpio_matrix_out(PSRAM_SPIQ_IO, SPIQ_OUT_IDX, 0, 0); gpio_matrix_in(PSRAM_SPIQ_IO, SPIQ_IN_IDX, 0); gpio_matrix_out(PSRAM_SPID_IO, SPID_OUT_IDX, 0, 0); gpio_matrix_in(PSRAM_SPID_IO, SPID_IN_IDX, 0); gpio_matrix_out(PSRAM_SPIWP_IO, SPIWP_OUT_IDX, 0, 0); gpio_matrix_in(PSRAM_SPIWP_IO, SPIWP_IN_IDX, 0); gpio_matrix_out(PSRAM_SPIHD_IO, SPIHD_OUT_IDX, 0, 0); gpio_matrix_in(PSRAM_SPIHD_IO, SPIHD_IN_IDX, 0); #warning "psram_gpio_config: parts not implemented for esp32s2beta" switch (mode) { case PSRAM_CACHE_S40M: extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M; break; case PSRAM_CACHE_S80M: extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M; #if 0 g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M; g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M; SET_PERI_REG_BITS(SPI_MEM_USER1_REG(_SPI_CACHE_PORT), SPI_MEM_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE); esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT); CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE); esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT); #endif break; case PSRAM_CACHE_S26M: case PSRAM_CACHE_S20M: extra_dummy = PSRAM_IO_MATRIX_DUMMY_20M; #if 0 g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_20M; g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_20M; SET_PERI_REG_BITS(SPI_MEM_USER1_REG(_SPI_CACHE_PORT), SPI_MEM_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_20M, SPI_MEM_USR_DUMMY_CYCLELEN_S); //DUMMY CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE); esp_rom_spiflash_config_clk(_SPI_20M_CLK_DIV, _SPI_CACHE_PORT); CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_MEM_FREAD_QIO | SPI_MEM_FREAD_QUAD | SPI_MEM_FREAD_DIO | SPI_MEM_FREAD_DUAL | SPI_MEM_FASTRD_MODE); esp_rom_spiflash_config_clk(_SPI_20M_CLK_DIV, _SPI_FLASH_PORT); #endif default: break; } SET_PERI_REG_MASK(SPI_MEM_USER_REG(0), SPI_MEM_USR_DUMMY); // dummy en //select pin function gpio PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPIHD_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPIWP_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPICS0_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPIQ_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPID_U, PIN_FUNC_GPIO); // flash clock signal should come from IO MUX. // set drive ability for clock PIN_FUNC_SELECT(PERIPHS_IO_MUX_SPICLK_U, FUNC_SPICLK_SPICLK); } psram_size_t psram_get_size(void) { if (PSRAM_IS_32MBIT_VER0(s_psram_id)) { return PSRAM_SIZE_32MBITS; } else if (PSRAM_IS_64MBIT(s_psram_id)) { return PSRAM_SIZE_64MBITS; } else { return PSRAM_SIZE_MAX; } } //psram gpio init , different working frequency we have different solutions esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init { assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now."); s_psram_mode = mode; periph_module_enable(PERIPH_SPI_MODULE); #warning "psram_enable: some code disabled for esp32s2beta" #if 0 WRITE_PERI_REG(SPI_MEM_EXT3_REG(0), 0x1); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_USR_PREP_HOLD_M); #endif switch (mode) { case PSRAM_CACHE_S80M: case PSRAM_CACHE_S40M: case PSRAM_CACHE_S26M: case PSRAM_CACHE_S20M: default: psram_spi_init(PSRAM_SPI_1, mode); CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_CS_HOLD); gpio_matrix_out(PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0); #ifdef FAKE_QPI /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral. We do this by routing it signal to signal 220/221, which are used as a loopback; the extra run through the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in silicon) as a temporary pad for this. So the signal path is: SPI CLK --> GPIO28 --> signal220(in then out) --> internal GPIO29 --> signal221(in then out) --> GPIO17(PSRAM CLK) */ gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0); gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC220_IDX, 0); gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC220_IDX, 0, 0); gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC221_IDX, 0); gpio_matrix_out(PSRAM_CLK_IO, SIG_IN_FUNC221_IDX, 0, 0); #else REG_SET_FIELD(SPI_MEM_SRAM_CMD_REG(0), SPI_MEM_SCLK_MODE, 1); REG_SET_FIELD(SPI_MEM_CTRL1_REG(1), SPI_MEM_CLK_MODE, 1); #endif break; } #if CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_9V // For flash 80Mhz, we must update ldo voltage in case older version of bootloader didn't do this. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config(); if (cfg.enable == 1 && cfg.tieh == RTC_VDDSDIO_TIEH_1_8V) { // VDDSDIO regulator is enabled @ 1.8V cfg.drefh = 3; cfg.drefm = 3; cfg.drefl = 3; cfg.force = 1; rtc_vddsdio_set_config(cfg); ets_delay_us(10); // wait for regulator to become stable } #endif CLEAR_PERI_REG_MASK(SPI_MEM_USER_REG(PSRAM_SPI_1), SPI_MEM_CS_SETUP_M); psram_gpio_config(mode); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[PSRAM_CS_IO], PIN_FUNC_GPIO); psram_read_id(&s_psram_id); if (!PSRAM_IS_VALID(s_psram_id)) { return ESP_FAIL; } uint32_t flash_id = g_rom_flashchip.device_id; if (flash_id == FLASH_ID_GD25LQ32C) { // Set drive ability for 1.8v flash in 80Mhz. SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPIHD_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPIWP_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPICS0_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPICLK_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPIQ_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SPID_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[PSRAM_CS_IO], FUN_DRV, 3, FUN_DRV_S); } if (PSRAM_IS_64MBIT(s_psram_id)) { // For this psram, we don't need any extra clock cycles after cs get back to high level s_clk_mode = PSRAM_CLK_MODE_NORM; REG_SET_FIELD(SPI_MEM_SRAM_CMD_REG(0), SPI_MEM_SCLK_MODE, 0); REG_SET_FIELD(SPI_MEM_CTRL1_REG(1), SPI_MEM_CLK_MODE, 0); } else if (PSRAM_IS_32MBIT_VER0(s_psram_id)) { s_clk_mode = PSRAM_CLK_MODE_DCLK; if (mode == PSRAM_CACHE_S80M) { } } psram_reset_mode(PSRAM_SPI_1); psram_enable_qio_mode(PSRAM_SPI_1); psram_cache_init(mode, vaddrmode); return ESP_OK; } static void IRAM_ATTR psram_clock_set(psram_spi_num_t spi_num, int8_t freqdiv) { uint32_t freqbits; if (1 >= freqdiv) { WRITE_PERI_REG(SPI_MEM_SRAM_CLK_REG(spi_num), SPI_MEM_SCLK_EQU_SYSCLK); } else { freqbits = (((freqdiv-1)<