/* * SPDX-FileCopyrightText: 2018-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "unity.h" #include "freertos/FreeRTOS.h" #include "driver/uart.h" #include "esp_vfs.h" #include "driver/uart_vfs.h" #include "esp_vfs_fat.h" #include "lwip/sockets.h" #include "lwip/netdb.h" #include "test_utils.h" typedef struct { int fd; int delay_ms; SemaphoreHandle_t sem; } test_task_param_t; typedef struct { fd_set *rdfds; fd_set *wrfds; fd_set *errfds; int maxfds; struct timeval *tv; int select_ret; SemaphoreHandle_t sem; } test_select_task_param_t; static const char message[] = "Hello world!"; static int open_dummy_socket(void) { const struct addrinfo hints = { .ai_family = AF_INET, .ai_socktype = SOCK_DGRAM, }; struct addrinfo *res = NULL; const int err = getaddrinfo("localhost", "80", &hints, &res); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_NOT_NULL(res); const int dummy_socket_fd = socket(res->ai_family, res->ai_socktype, 0); TEST_ASSERT(dummy_socket_fd >= 0); return dummy_socket_fd; } static int socket_init(void) { const struct addrinfo hints = { .ai_family = AF_INET, .ai_socktype = SOCK_DGRAM, }; struct addrinfo *res; int err; struct sockaddr_in saddr = { 0 }; int socket_fd = -1; err = getaddrinfo("localhost", "80", &hints, &res); TEST_ASSERT_EQUAL(err, 0); TEST_ASSERT_NOT_NULL(res); socket_fd = socket(res->ai_family, res->ai_socktype, 0); TEST_ASSERT(socket_fd >= 0); saddr.sin_family = PF_INET; saddr.sin_port = htons(80); saddr.sin_addr.s_addr = htonl(INADDR_ANY); err = bind(socket_fd, (struct sockaddr *) &saddr, sizeof(struct sockaddr_in)); TEST_ASSERT(err >= 0); err = connect(socket_fd, res->ai_addr, res->ai_addrlen); TEST_ASSERT_EQUAL_MESSAGE(err, 0, "Socket connection failed"); freeaddrinfo(res); return socket_fd; } static void uart1_init(void) { uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .source_clk = UART_SCLK_DEFAULT, }; uart_driver_install(UART_NUM_1, 256, 256, 0, NULL, 0); uart_param_config(UART_NUM_1, &uart_config); } static void read_task(void *param) { char recv_message[sizeof(message)]; const test_task_param_t *test_task_param = param; vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS); read(test_task_param->fd, recv_message, sizeof(message)); if (test_task_param->sem) { xSemaphoreGive(test_task_param->sem); } vTaskDelete(NULL); } static inline void start_read_task(const test_task_param_t *test_task_param) { xTaskCreate(read_task, "read_task", 8*1024, (void *) test_task_param, 5, NULL); } static void send_task(void *param) { const test_task_param_t *test_task_param = param; vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS); write(test_task_param->fd, message, sizeof(message)); if (test_task_param->sem) { xSemaphoreGive(test_task_param->sem); } vTaskDelete(NULL); } static inline void start_write_task(const test_task_param_t *test_task_param) { xTaskCreate(send_task, "send_task", 8*1024, (void *) test_task_param, 5, NULL); } static void init(int *uart_fd, int *socket_fd) { test_case_uses_tcpip(); uart1_init(); uart_set_loop_back(UART_NUM_1, true); *uart_fd = open("/dev/uart/1", O_RDWR); TEST_ASSERT_NOT_EQUAL_MESSAGE(*uart_fd, -1, "Cannot open UART"); uart_vfs_dev_use_driver(1); *socket_fd = socket_init(); } static void deinit(int uart_fd, int socket_fd) { uart_vfs_dev_use_nonblocking(1); close(uart_fd); uart_driver_delete(UART_NUM_1); close(socket_fd); } TEST_CASE("UART can do select()", "[vfs]") { int uart_fd; int socket_fd; struct timeval tv = { .tv_sec = 0, .tv_usec = 100000, }; char recv_message[sizeof(message)]; init(&uart_fd, &socket_fd); fd_set rfds; FD_ZERO(&rfds); FD_SET(uart_fd, &rfds); //without socket in rfds it will not use the same signalization const test_task_param_t test_task_param = { .fd = uart_fd, .delay_ms = 50, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(test_task_param.sem); start_write_task(&test_task_param); int s = select(uart_fd + 1, &rfds, NULL, NULL, &tv); TEST_ASSERT_EQUAL(s, 1); TEST_ASSERT(FD_ISSET(uart_fd, &rfds)); TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds)); int read_bytes = read(uart_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); FD_ZERO(&rfds); FD_SET(uart_fd, &rfds); FD_SET(socket_fd, &rfds); start_write_task(&test_task_param); s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv); TEST_ASSERT_EQUAL(s, 1); TEST_ASSERT(FD_ISSET(uart_fd, &rfds)); TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds)); read_bytes = read(uart_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); vSemaphoreDelete(test_task_param.sem); deinit(uart_fd, socket_fd); } static void select_task(void *task_param) { const test_select_task_param_t *param = task_param; int s = select(param->maxfds, param->rdfds, param->wrfds, param->errfds, param->tv); TEST_ASSERT_EQUAL(param->select_ret, s); if (param->sem) { xSemaphoreGive(param->sem); } vTaskDelete(NULL); } static void inline start_select_task(test_select_task_param_t *param) { xTaskCreate(select_task, "select_task", 4*1024, (void *) param, 5, NULL); } TEST_CASE("concurrent selects work for UART", "[vfs]") { // This test case initiates two select tasks on the same UART FD, // One task will wait for a write operation, while the other will wait for a read operation to occur. // The first task will complete its operation before the second task proceeds with its operation on the same FD // In this scenario, the write operation will be performed initially, // followed by the subsequent continuation of the read operation. int uart_fd, socket_fd; init(&uart_fd, &socket_fd); const test_task_param_t send_param = { .fd = uart_fd, .delay_ms = 0, .sem = NULL, }; fd_set wrfds1; FD_ZERO(&wrfds1); FD_SET(uart_fd, &wrfds1); test_select_task_param_t param_write = { .rdfds = NULL, .wrfds = &wrfds1, .errfds = NULL, .maxfds = uart_fd + 1, .tv = NULL, .select_ret = 1, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(param_write.sem); //Start first task which will wait on select call for write operation on the UART FD start_select_task(¶m_write); fd_set rdfds2; FD_ZERO(&rdfds2); FD_SET(uart_fd, &rdfds2); test_select_task_param_t param_read = { .rdfds = &rdfds2, .wrfds = NULL, .errfds = NULL, .maxfds = uart_fd + 1, .tv = NULL, .select_ret = 1, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(param_read.sem); //Start second task which will wait on another select call for read operation on the same UART FD start_select_task(¶m_read); //Start writing operation on the UART port start_write_task(&send_param); //Confirm the completion of the write operation TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param_write.sem, 1000 / portTICK_PERIOD_MS)); vSemaphoreDelete(param_write.sem); TEST_ASSERT(FD_ISSET(uart_fd, &wrfds1)); //Start reading operation on the same UART port start_read_task(&send_param); //Confirm the completion of the read operation TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param_read.sem, 1000 / portTICK_PERIOD_MS)); vSemaphoreDelete(param_read.sem); TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2)); deinit(uart_fd, socket_fd); } TEST_CASE("concurrent selects work", "[vfs]") { int uart_fd, socket_fd; init(&uart_fd, &socket_fd); const int dummy_socket_fd = open_dummy_socket(); { // Two tasks will wait for the same UART FD for reading and they will time-out struct timeval tv = { .tv_sec = 0, .tv_usec = 100000, }; fd_set rdfds1; FD_ZERO(&rdfds1); FD_SET(uart_fd, &rdfds1); test_select_task_param_t param = { .rdfds = &rdfds1, .wrfds = NULL, .errfds = NULL, .maxfds = uart_fd + 1, .tv = &tv, .select_ret = 0, // expected timeout .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(param.sem); fd_set rdfds2; FD_ZERO(&rdfds2); FD_SET(uart_fd, &rdfds2); FD_SET(socket_fd, &rdfds2); FD_SET(dummy_socket_fd, &rdfds2); start_select_task(¶m); vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select() int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv); TEST_ASSERT_EQUAL(0, s); // timeout here as well TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS)); vSemaphoreDelete(param.sem); } { // One tasks waits for UART reading and one for writing. The former will be successful and latter will // time-out. struct timeval tv = { .tv_sec = 0, .tv_usec = 100000, }; fd_set wrfds1; FD_ZERO(&wrfds1); FD_SET(uart_fd, &wrfds1); test_select_task_param_t param = { .rdfds = NULL, .wrfds = &wrfds1, .errfds = NULL, .maxfds = uart_fd + 1, .tv = &tv, .select_ret = 1, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(param.sem); const test_task_param_t send_param = { .fd = uart_fd, .delay_ms = 50, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(send_param.sem); start_write_task(&send_param); // This task will write to UART which will be detected by select() start_select_task(¶m); vTaskDelay(100 / portTICK_PERIOD_MS); //make sure the task has started and waits in select() fd_set rdfds2; FD_ZERO(&rdfds2); FD_SET(uart_fd, &rdfds2); FD_SET(socket_fd, &rdfds2); FD_SET(dummy_socket_fd, &rdfds2); int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv); TEST_ASSERT_EQUAL(1, s); TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2)); TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rdfds2)); TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rdfds2)); TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS)); vSemaphoreDelete(param.sem); TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(send_param.sem, 1000 / portTICK_PERIOD_MS)); vSemaphoreDelete(send_param.sem); } deinit(uart_fd, socket_fd); close(dummy_socket_fd); } TEST_CASE("select() works with concurrent mount", "[vfs][fatfs]") { wl_handle_t test_wl_handle; int uart_fd, socket_fd; init(&uart_fd, &socket_fd); const int dummy_socket_fd = open_dummy_socket(); esp_vfs_fat_sdmmc_mount_config_t mount_config = { .format_if_mount_failed = true, .max_files = 2 }; // select() will be waiting for a socket & UART and FATFS mount will occur in parallel struct timeval tv = { .tv_sec = 1, .tv_usec = 0, }; fd_set rdfds; FD_ZERO(&rdfds); FD_SET(uart_fd, &rdfds); FD_SET(dummy_socket_fd, &rdfds); test_select_task_param_t param = { .rdfds = &rdfds, .wrfds = NULL, .errfds = NULL, .maxfds = MAX(uart_fd, dummy_socket_fd) + 1, .tv = &tv, .select_ret = 0, // expected timeout .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(param.sem); start_select_task(¶m); vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select() TEST_ESP_OK(esp_vfs_fat_spiflash_mount_rw_wl("/spiflash", NULL, &mount_config, &test_wl_handle)); TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS)); // select() will be waiting for a socket & UART and FATFS unmount will occur in parallel FD_ZERO(&rdfds); FD_SET(uart_fd, &rdfds); FD_SET(dummy_socket_fd, &rdfds); start_select_task(¶m); vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select() TEST_ESP_OK(esp_vfs_fat_spiflash_unmount_rw_wl("/spiflash", test_wl_handle)); TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS)); vSemaphoreDelete(param.sem); deinit(uart_fd, socket_fd); close(dummy_socket_fd); } TEST_CASE("UART can do poll() with POLLIN event", "[vfs]") { int uart_fd; int socket_fd; char recv_message[sizeof(message)]; init(&uart_fd, &socket_fd); struct pollfd poll_fds[] = { { .fd = uart_fd, .events = POLLIN, }, { .fd = -1, // should be ignored according to the documentation of poll() }, }; const test_task_param_t test_task_param = { .fd = uart_fd, .delay_ms = 50, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(test_task_param.sem); start_write_task(&test_task_param); int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100); TEST_ASSERT_EQUAL(s, 1); TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd); TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents); TEST_ASSERT_EQUAL(-1, poll_fds[1].fd); TEST_ASSERT_EQUAL(0, poll_fds[1].revents); int read_bytes = read(uart_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); poll_fds[1].fd = socket_fd; poll_fds[1].events = POLLIN; start_write_task(&test_task_param); s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100); TEST_ASSERT_EQUAL(s, 1); TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd); TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents); TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd); TEST_ASSERT_EQUAL(0, poll_fds[1].revents); read_bytes = read(uart_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); vSemaphoreDelete(test_task_param.sem); deinit(uart_fd, socket_fd); } TEST_CASE("UART can do poll() with POLLOUT event", "[vfs]") { int uart_fd; int socket_fd; char recv_message[sizeof(message)]; init(&uart_fd, &socket_fd); struct pollfd poll_fds[] = { { .fd = uart_fd, .events = POLLOUT, }, { .fd = -1, // should be ignored according to the documentation of poll() }, }; const test_task_param_t test_task_param = { .fd = uart_fd, .delay_ms = 50, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(test_task_param.sem); start_write_task(&test_task_param); poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100); TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd); TEST_ASSERT_EQUAL(POLLOUT, poll_fds[0].revents); TEST_ASSERT_EQUAL(-1, poll_fds[1].fd); TEST_ASSERT_EQUAL(0, poll_fds[1].revents); int read_bytes = read(uart_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); vSemaphoreDelete(test_task_param.sem); deinit(uart_fd, socket_fd); } TEST_CASE("socket can do select()", "[vfs]") { int uart_fd; int socket_fd; struct timeval tv = { .tv_sec = 0, .tv_usec = 100000, }; char recv_message[sizeof(message)]; init(&uart_fd, &socket_fd); const int dummy_socket_fd = open_dummy_socket(); fd_set rfds; FD_ZERO(&rfds); FD_SET(uart_fd, &rfds); FD_SET(socket_fd, &rfds); FD_SET(dummy_socket_fd, &rfds); const test_task_param_t test_task_param = { .fd = socket_fd, .delay_ms = 50, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(test_task_param.sem); start_write_task(&test_task_param); const int s = select(MAX(MAX(uart_fd, socket_fd), dummy_socket_fd) + 1, &rfds, NULL, NULL, &tv); TEST_ASSERT_EQUAL(1, s); TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds)); TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rfds)); TEST_ASSERT(FD_ISSET(socket_fd, &rfds)); int read_bytes = read(socket_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); vSemaphoreDelete(test_task_param.sem); deinit(uart_fd, socket_fd); close(dummy_socket_fd); } TEST_CASE("socket can do poll()", "[vfs]") { int uart_fd; int socket_fd; char recv_message[sizeof(message)]; init(&uart_fd, &socket_fd); const int dummy_socket_fd = open_dummy_socket(); struct pollfd poll_fds[] = { { .fd = uart_fd, .events = POLLIN, }, { .fd = socket_fd, .events = POLLIN, }, { .fd = dummy_socket_fd, .events = POLLIN, }, }; const test_task_param_t test_task_param = { .fd = socket_fd, .delay_ms = 50, .sem = xSemaphoreCreateBinary(), }; TEST_ASSERT_NOT_NULL(test_task_param.sem); start_write_task(&test_task_param); int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100); TEST_ASSERT_EQUAL(s, 1); TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd); TEST_ASSERT_EQUAL(0, poll_fds[0].revents); TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd); TEST_ASSERT_EQUAL(POLLIN, poll_fds[1].revents); TEST_ASSERT_EQUAL(dummy_socket_fd, poll_fds[2].fd); TEST_ASSERT_EQUAL(0, poll_fds[2].revents); int read_bytes = read(socket_fd, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(read_bytes, sizeof(message)); TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message)); TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE); vSemaphoreDelete(test_task_param.sem); deinit(uart_fd, socket_fd); close(dummy_socket_fd); } TEST_CASE("select() timeout", "[vfs]") { int uart_fd; int socket_fd; struct timeval tv = { .tv_sec = 0, .tv_usec = 100000, }; init(&uart_fd, &socket_fd); fd_set rfds; FD_ZERO(&rfds); FD_SET(uart_fd, &rfds); FD_SET(socket_fd, &rfds); int s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv); TEST_ASSERT_EQUAL(s, 0); TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds)); TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds)); FD_ZERO(&rfds); s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv); TEST_ASSERT_EQUAL(s, 0); TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds)); TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds)); deinit(uart_fd, socket_fd); } TEST_CASE("poll() timeout", "[vfs]") { int uart_fd; int socket_fd; init(&uart_fd, &socket_fd); struct pollfd poll_fds[] = { { .fd = uart_fd, .events = POLLIN, }, { .fd = socket_fd, .events = POLLIN, }, }; int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100); TEST_ASSERT_EQUAL(s, 0); TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd); TEST_ASSERT_EQUAL(0, poll_fds[0].revents); TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd); TEST_ASSERT_EQUAL(0, poll_fds[1].revents); poll_fds[0].fd = -1; poll_fds[1].fd = -1; s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100); TEST_ASSERT_EQUAL(s, 0); TEST_ASSERT_EQUAL(-1, poll_fds[0].fd); TEST_ASSERT_EQUAL(0, poll_fds[0].revents); TEST_ASSERT_EQUAL(-1, poll_fds[1].fd); TEST_ASSERT_EQUAL(0, poll_fds[1].revents); deinit(uart_fd, socket_fd); }