/* * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include #include #include "inttypes.h" #include "esp_log.h" #include "esp_attr.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "unity.h" #include "esp_heap_caps.h" #include "esp_private/esp_psram_io.h" #include "esp_psram.h" #include "esp_private/esp_psram_extram.h" #include "esp_flash.h" #include "esp_partition.h" __attribute__((unused)) const static char *TAG = "PSRAM"; TEST_CASE("test psram heap allocable","[psram]") { size_t largest_size = heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM); ESP_LOGI(TAG, "largest size is %zu", largest_size); uint32_t *ext_buffer = (uint32_t *)heap_caps_calloc(largest_size, 1, MALLOC_CAP_SPIRAM); TEST_ASSERT(ext_buffer); intptr_t start = (intptr_t)ext_buffer; intptr_t end = (intptr_t)ext_buffer + largest_size; ESP_LOGI(TAG, "test ext buffer start addr is 0x%"PRIxPTR", end addr is 0x%"PRIxPTR, start, end); TEST_ASSERT(esp_psram_check_ptr_addr((void *)start) && esp_psram_check_ptr_addr((void *)end)); for (int i = 0; i < largest_size / sizeof(uint32_t); i++) { ext_buffer[i] = (i + 1) ^ 0xaaaaaaaa; } for (int i = 0; i < largest_size / sizeof(uint32_t); i++) { TEST_ASSERT(ext_buffer[i] == ((i + 1) ^ 0xaaaaaaaa)); } free(ext_buffer); } #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS && CONFIG_SPIRAM_RODATA #include "esp_partition.h" #include "driver/gptimer.h" #include "esp_rom_spiflash.h" #define SECTOR_LEN 4096 #define TEST_NUM 10 #define TEST_BUF {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9} static uint32_t s_timer_cb_exe_times; static const uint8_t s_test_buf[TEST_NUM] = TEST_BUF; static const esp_partition_t *s_get_partition(void) { //Find the "storage1" partition defined in `partitions.csv` const esp_partition_t *result = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "storage1"); if (!result) { ESP_LOGE(TAG, "Can't find the partition, please define it correctly in `partitions.csv`"); abort(); } return result; } static bool NOINLINE_ATTR s_test_rodata(gptimer_handle_t timer, const gptimer_alarm_event_data_t *edata, void *user_ctx) { s_timer_cb_exe_times ++; uint8_t cmp_buf[TEST_NUM] = TEST_BUF; TEST_ASSERT(memcmp(cmp_buf, s_test_buf, TEST_NUM) == 0); return false; } TEST_CASE("test spi1 flash operation after putting .text and .rodata into psram", "[psram]") { //Get the partition used for SPI1 erase operation const esp_partition_t *part = s_get_partition(); ESP_LOGI(TAG, "found partition '%s' at offset 0x%"PRIx32" with size 0x%"PRIx32, part->label, part->address, part->size); //Erase whole region TEST_ESP_OK(esp_flash_erase_region(part->flash_chip, part->address, part->size)); gptimer_handle_t gptimer = NULL; gptimer_config_t timer_config = { .resolution_hz = 1 * 1000 * 1000, .clk_src = GPTIMER_CLK_SRC_DEFAULT, .direction = GPTIMER_COUNT_UP, }; TEST_ESP_OK(gptimer_new_timer(&timer_config, &gptimer)); gptimer_alarm_config_t alarm_config = { .reload_count = 0, .alarm_count = 10, // 10us .flags.auto_reload_on_alarm = true, }; TEST_ESP_OK(gptimer_set_alarm_action(gptimer, &alarm_config)); gptimer_event_callbacks_t cbs = { .on_alarm = s_test_rodata, }; TEST_ESP_OK(gptimer_register_event_callbacks(gptimer, &cbs, NULL)); esp_rom_spiflash_result_t ret; uint32_t start = part->address; ESP_LOGI(TAG, "test data partition: 0x%"PRIx32, start); uint32_t sector_num = start / SECTOR_LEN; TEST_ESP_OK(gptimer_enable(gptimer)); TEST_ESP_OK(gptimer_start(gptimer)); ret = esp_rom_spiflash_erase_sector(sector_num); if (ret != ESP_ROM_SPIFLASH_RESULT_OK) { ESP_LOGE(TAG, "erase fail!"); TEST_ASSERT(false); } TEST_ESP_OK(gptimer_stop(gptimer)); TEST_ASSERT(s_timer_cb_exe_times > 0); printf("timer callback runs %"PRId32" times\n", s_timer_cb_exe_times); ESP_LOGI(TAG, "Finish"); TEST_ESP_OK(gptimer_disable(gptimer)); TEST_ESP_OK(gptimer_del_timer(gptimer)); } #endif //CONFIG_SPIRAM_FETCH_INSTRUCTIONS && CONFIG_SPIRAM_RODATA TEST_CASE("test psram unaligned access", "[psram]") { size_t largest_size = heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); ESP_LOGI(TAG, "largest size is %zu", largest_size); uint8_t *ext_buffer = (uint8_t *)heap_caps_calloc(largest_size, 1, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); for (int i = 0; i < largest_size; i++) { ext_buffer[i] = i & 0xff; } for (int i = 0; i < largest_size - 4; i += 4) { uint8_t *ptr_base = (uint8_t *)(ext_buffer + i); for (int j = 1; j < 4; j++) { uint8_t *unaligned_ptr = (uint8_t *)(ptr_base + j); ESP_LOGV(TAG, "i is %d, j is %d, unaligned_ptr addr is %p", i, j, unaligned_ptr); uint8_t val_8bit = *unaligned_ptr; ESP_LOGV(TAG, "i is %d, j is %d, val_8bit val is 0x%"PRIx8, i, j, val_8bit); uint8_t first_byte = (i + j) & 0xff; uint8_t expected_val_8bit = first_byte; TEST_ASSERT(val_8bit == expected_val_8bit); /** * If the vaddr doesn't support unaligned access, below codes will generate `LoadStoreAlignment` error. * * This is because below lines includes 16-bit load and 32-bit load: * - l16ui * - l32i.n * * Whereas we use an `add.n` to adding an offset (from 0 to 3) to the original buffer address. * * Therefore we get unaligned access */ uint16_t val_16bit = *(uint16_t *)unaligned_ptr; ESP_LOGV(TAG, "i is %d, j is %d, val_16bit val is 0x%"PRIx16, i, j, val_16bit); uint32_t val_32bit = *(uint32_t *)unaligned_ptr; ESP_LOGV(TAG, "i is %d, j is %d, val_32bit val is 0x%"PRIx32, i, j, val_32bit); uint8_t second_byte = ((i + j) & 0xff) + 1; uint8_t third_byte = ((i + j) & 0xff) + 2; uint8_t fourth_byte = ((i + j) & 0xff) + 3; uint16_t expected_val_16bit = (second_byte << 8) | first_byte; ESP_LOGV(TAG, "i is %d, j is %d, expected_val_16bit val is 0x%"PRIx16, i, j, expected_val_16bit); TEST_ASSERT(val_16bit == expected_val_16bit); uint32_t expected_val_32bit = (fourth_byte << 24) | (third_byte << 16) | (second_byte << 8) | first_byte; ESP_LOGV(TAG, "i is %d, j is %d, expected_val_32bit val is 0x%"PRIx32"\n", i, j, expected_val_32bit); TEST_ASSERT(val_32bit == expected_val_32bit); } } heap_caps_free(ext_buffer); }