// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "soc/rtc.h" #include "soc/dport_reg.h" #include "soc/dport_access.h" #include "soc/i2s_reg.h" #include "hal/cpu_hal.h" #include "driver/periph_ctrl.h" #include "bootloader_clock.h" #include "hal/wdt_hal.h" #include "driver/spi_common_internal.h" // [refactor-todo]: for spicommon_periph_in_use #include "esp_log.h" #include "esp32/clk.h" #include "esp32/rom/rtc.h" #include "esp_rom_uart.h" #include "sdkconfig.h" static const char* TAG = "clk"; /* Number of cycles to wait from the 32k XTAL oscillator to consider it running. * Larger values increase startup delay. Smaller values may cause false positive * detection (i.e. oscillator runs for a few cycles and then stops). */ #define SLOW_CLK_CAL_CYCLES CONFIG_ESP32_RTC_CLK_CAL_CYCLES #ifdef CONFIG_ESP32_RTC_XTAL_CAL_RETRY #define RTC_XTAL_CAL_RETRY CONFIG_ESP32_RTC_XTAL_CAL_RETRY #else #define RTC_XTAL_CAL_RETRY 1 #endif /* Lower threshold for a reasonably-looking calibration value for a 32k XTAL. * The ideal value (assuming 32768 Hz frequency) is 1000000/32768*(2**19) = 16*10^6. */ #define MIN_32K_XTAL_CAL_VAL 15000000L /* Indicates that this 32k oscillator gets input from external oscillator, rather * than a crystal. */ #define EXT_OSC_FLAG BIT(3) /* This is almost the same as rtc_slow_freq_t, except that we define * an extra enum member for the external 32k oscillator. * For convenience, lower 2 bits should correspond to rtc_slow_freq_t values. */ typedef enum { SLOW_CLK_150K = RTC_SLOW_FREQ_RTC, //!< Internal 150 kHz RC oscillator SLOW_CLK_32K_XTAL = RTC_SLOW_FREQ_32K_XTAL, //!< External 32 kHz XTAL SLOW_CLK_8MD256 = RTC_SLOW_FREQ_8MD256, //!< Internal 8 MHz RC oscillator, divided by 256 SLOW_CLK_32K_EXT_OSC = RTC_SLOW_FREQ_32K_XTAL | EXT_OSC_FLAG //!< External 32k oscillator connected to 32K_XP pin } slow_clk_sel_t; static void select_rtc_slow_clk(slow_clk_sel_t slow_clk) { rtc_slow_freq_t rtc_slow_freq = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V; uint32_t cal_val = 0; /* number of times to repeat 32k XTAL calibration * before giving up and switching to the internal RC */ int retry_32k_xtal = RTC_XTAL_CAL_RETRY; do { if (rtc_slow_freq == RTC_SLOW_FREQ_32K_XTAL) { /* 32k XTAL oscillator needs to be enabled and running before it can * be used. Hardware doesn't have a direct way of checking if the * oscillator is running. Here we use rtc_clk_cal function to count * the number of main XTAL cycles in the given number of 32k XTAL * oscillator cycles. If the 32k XTAL has not started up, calibration * will time out, returning 0. */ ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up"); if (slow_clk == SLOW_CLK_32K_XTAL) { rtc_clk_32k_enable(true); } else if (slow_clk == SLOW_CLK_32K_EXT_OSC) { rtc_clk_32k_enable_external(); } // When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup. if (SLOW_CLK_CAL_CYCLES > 0) { cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES); if (cal_val == 0 || cal_val < MIN_32K_XTAL_CAL_VAL) { if (retry_32k_xtal-- > 0) { continue; } ESP_EARLY_LOGW(TAG, "32 kHz XTAL not found, switching to internal 150 kHz oscillator"); rtc_slow_freq = RTC_SLOW_FREQ_RTC; } } } else if (rtc_slow_freq == RTC_SLOW_FREQ_8MD256) { rtc_clk_8m_enable(true, true); } rtc_clk_slow_freq_set(rtc_slow_freq); if (SLOW_CLK_CAL_CYCLES > 0) { /* TODO: 32k XTAL oscillator has some frequency drift at startup. * Improve calibration routine to wait until the frequency is stable. */ cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES); } else { const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL; cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz()); } } while (cal_val == 0); ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val); esp_clk_slowclk_cal_set(cal_val); } __attribute__((weak)) void esp_clk_init(void) { rtc_config_t cfg = RTC_CONFIG_DEFAULT(); rtc_init(cfg); #if (CONFIG_ESP32_COMPATIBLE_PRE_V2_1_BOOTLOADERS || CONFIG_ESP32_APP_INIT_CLK) /* Check the bootloader set the XTAL frequency. Bootloaders pre-v2.1 don't do this. */ rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get(); if (xtal_freq == RTC_XTAL_FREQ_AUTO) { ESP_EARLY_LOGW(TAG, "RTC domain not initialised by bootloader"); bootloader_clock_configure(); } #else /* If this assertion fails, either upgrade the bootloader or enable CONFIG_ESP32_COMPATIBLE_PRE_V2_1_BOOTLOADERS */ assert(rtc_clk_xtal_freq_get() != RTC_XTAL_FREQ_AUTO); #endif rtc_clk_fast_freq_set(RTC_FAST_FREQ_8M); #ifdef CONFIG_BOOTLOADER_WDT_ENABLE // WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed. // If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times. // Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec). // This prevents excessive delay before resetting in case the supply voltage is drawdown. // (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec). wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL}; uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_feed(&rtc_wdt_ctx); //Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_write_protect_enable(&rtc_wdt_ctx); #endif #if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) select_rtc_slow_clk(SLOW_CLK_32K_XTAL); #elif defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_OSC) select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC); #elif defined(CONFIG_ESP32_RTC_CLK_SRC_INT_8MD256) select_rtc_slow_clk(SLOW_CLK_8MD256); #else select_rtc_slow_clk(RTC_SLOW_FREQ_RTC); #endif #ifdef CONFIG_BOOTLOADER_WDT_ENABLE // After changing a frequency WDT timeout needs to be set for new frequency. stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_feed(&rtc_wdt_ctx); wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_write_protect_enable(&rtc_wdt_ctx); #endif rtc_cpu_freq_config_t old_config; rtc_cpu_freq_config_t new_config; rtc_clk_cpu_freq_get_config(&old_config); const uint32_t old_freq_mhz = old_config.freq_mhz; const uint32_t new_freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ; bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config); assert(res); // Wait for UART TX to finish, otherwise some UART output will be lost // when switching APB frequency if (CONFIG_ESP_CONSOLE_UART_NUM >= 0) { esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM); } rtc_clk_cpu_freq_set_config(&new_config); // Re calculate the ccount to make time calculation correct. cpu_hal_set_cycle_count( (uint64_t)cpu_hal_get_cycle_count() * new_freq_mhz / old_freq_mhz ); } /* This function is not exposed as an API at this point. * All peripheral clocks are default enabled after chip is powered on. * This function disables some peripheral clocks when cpu starts. * These peripheral clocks are enabled when the peripherals are initialized * and disabled when they are de-initialized. */ __attribute__((weak)) void esp_perip_clk_init(void) { uint32_t common_perip_clk; uint32_t hwcrypto_perip_clk; uint32_t wifi_bt_sdio_clk; #if CONFIG_FREERTOS_UNICORE RESET_REASON rst_reas[1]; #else RESET_REASON rst_reas[2]; #endif rst_reas[0] = rtc_get_reset_reason(0); #if !CONFIG_FREERTOS_UNICORE rst_reas[1] = rtc_get_reset_reason(1); #endif /* For reason that only reset CPU, do not disable the clocks * that have been enabled before reset. */ if ((rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == SW_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) #if !CONFIG_FREERTOS_UNICORE || (rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == SW_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) #endif ) { common_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN_REG); hwcrypto_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERI_CLK_EN_REG); wifi_bt_sdio_clk = ~DPORT_READ_PERI_REG(DPORT_WIFI_CLK_EN_REG); } else { common_perip_clk = DPORT_WDG_CLK_EN | DPORT_PCNT_CLK_EN | DPORT_LEDC_CLK_EN | DPORT_TIMERGROUP1_CLK_EN | DPORT_PWM0_CLK_EN | DPORT_TWAI_CLK_EN | DPORT_PWM1_CLK_EN | DPORT_PWM2_CLK_EN | DPORT_PWM3_CLK_EN; hwcrypto_perip_clk = DPORT_PERI_EN_AES | DPORT_PERI_EN_SHA | DPORT_PERI_EN_RSA | DPORT_PERI_EN_SECUREBOOT; wifi_bt_sdio_clk = DPORT_WIFI_CLK_WIFI_EN | DPORT_WIFI_CLK_BT_EN_M | DPORT_WIFI_CLK_UNUSED_BIT5 | DPORT_WIFI_CLK_UNUSED_BIT12 | DPORT_WIFI_CLK_SDIOSLAVE_EN | DPORT_WIFI_CLK_SDIO_HOST_EN | DPORT_WIFI_CLK_EMAC_EN; } //Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state. common_perip_clk |= DPORT_I2S0_CLK_EN | #if CONFIG_ESP_CONSOLE_UART_NUM != 0 DPORT_UART_CLK_EN | #endif #if CONFIG_ESP_CONSOLE_UART_NUM != 1 DPORT_UART1_CLK_EN | #endif #if CONFIG_ESP_CONSOLE_UART_NUM != 2 DPORT_UART2_CLK_EN | #endif DPORT_SPI2_CLK_EN | DPORT_I2C_EXT0_CLK_EN | DPORT_UHCI0_CLK_EN | DPORT_RMT_CLK_EN | DPORT_UHCI1_CLK_EN | DPORT_SPI3_CLK_EN | DPORT_I2C_EXT1_CLK_EN | DPORT_I2S1_CLK_EN | DPORT_SPI_DMA_CLK_EN; common_perip_clk &= ~DPORT_SPI01_CLK_EN; #if CONFIG_SPIRAM_SPEED_80M //80MHz SPIRAM uses SPI2/SPI3 as well; it's initialized before this is called. Because it is used in //a weird mode where clock to the peripheral is disabled but reset is also disabled, it 'hangs' //in a state where it outputs a continuous 80MHz signal. Mask its bit here because we should //not modify that state, regardless of what we calculated earlier. if (spicommon_periph_in_use(HSPI_HOST)) { common_perip_clk &= ~DPORT_SPI2_CLK_EN; } if (spicommon_periph_in_use(VSPI_HOST)) { common_perip_clk &= ~DPORT_SPI3_CLK_EN; } #endif /* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock, * the current is not reduced when disable I2S clock. */ DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(0), I2S_CLKA_ENA); DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(1), I2S_CLKA_ENA); /* Disable some peripheral clocks. */ DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, common_perip_clk); DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, common_perip_clk); /* Disable hardware crypto clocks. */ DPORT_CLEAR_PERI_REG_MASK(DPORT_PERI_CLK_EN_REG, hwcrypto_perip_clk); DPORT_SET_PERI_REG_MASK(DPORT_PERI_RST_EN_REG, hwcrypto_perip_clk); /* Disable WiFi/BT/SDIO clocks. */ DPORT_CLEAR_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, wifi_bt_sdio_clk); /* Enable RNG clock. */ periph_module_enable(PERIPH_RNG_MODULE); } void rtc_clk_select_rtc_slow_clk(void) { select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL); }