// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_system.h" #include "esp_attr.h" #include "esp_wifi.h" #include "esp_private/wifi.h" #include "esp_log.h" #include "sdkconfig.h" #include "esp32/rom/efuse.h" #include "esp32/rom/cache.h" #include "esp32/rom/uart.h" #include "soc/dport_reg.h" #include "soc/gpio_periph.h" #include "soc/efuse_periph.h" #include "soc/rtc_periph.h" #include "soc/timer_periph.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "soc/rtc_wdt.h" #include "soc/soc_memory_layout.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/xtensa_api.h" #include "esp_heap_caps.h" #include "esp_private/system_internal.h" #include "esp_efuse.h" #include "esp_efuse_table.h" static const char* TAG = "system_api"; static uint8_t base_mac_addr[6] = { 0 }; #define SHUTDOWN_HANDLERS_NO 3 static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO]; esp_err_t esp_base_mac_addr_set(uint8_t *mac) { if (mac == NULL) { ESP_LOGE(TAG, "Base MAC address is NULL"); abort(); } memcpy(base_mac_addr, mac, 6); return ESP_OK; } esp_err_t esp_base_mac_addr_get(uint8_t *mac) { uint8_t null_mac[6] = {0}; if (memcmp(base_mac_addr, null_mac, 6) == 0) { ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE"); return ESP_ERR_INVALID_MAC; } memcpy(mac, base_mac_addr, 6); return ESP_OK; } esp_err_t esp_efuse_mac_get_custom(uint8_t *mac) { uint8_t version; esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_VER, &version, 8); if (version != 1) { ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version); return ESP_ERR_INVALID_VERSION; } uint8_t efuse_crc; esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48); esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_CRC, &efuse_crc, 8); uint8_t calc_crc = esp_crc8(mac, 6); if (efuse_crc != calc_crc) { ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc); return ESP_ERR_INVALID_CRC; } return ESP_OK; } esp_err_t esp_efuse_mac_get_default(uint8_t* mac) { uint8_t efuse_crc; esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48); esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &efuse_crc, 8); uint8_t calc_crc = esp_crc8(mac, 6); if (efuse_crc != calc_crc) { // Small range of MAC addresses are accepted even if CRC is invalid. // These addresses are reserved for Espressif internal use. uint32_t mac_high = ((uint32_t)mac[0] << 8) | mac[1]; if ((mac_high & 0xFFFF) == 0x18fe) { uint32_t mac_low = ((uint32_t)mac[2] << 24) | ((uint32_t)mac[3] << 16) | ((uint32_t)mac[4] << 8) | mac[5]; if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) { return ESP_OK; } } else { ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc); abort(); } } return ESP_OK; } esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac) { uint8_t idx; if (local_mac == NULL || universal_mac == NULL) { ESP_LOGE(TAG, "mac address param is NULL"); return ESP_ERR_INVALID_ARG; } memcpy(local_mac, universal_mac, 6); for (idx = 0; idx < 64; idx++) { local_mac[0] = universal_mac[0] | 0x02; local_mac[0] ^= idx << 2; if (memcmp(local_mac, universal_mac, 6)) { break; } } return ESP_OK; } esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type) { uint8_t efuse_mac[6]; if (mac == NULL) { ESP_LOGE(TAG, "mac address param is NULL"); return ESP_ERR_INVALID_ARG; } if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) { ESP_LOGE(TAG, "mac type is incorrect"); return ESP_ERR_INVALID_ARG; } _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \ || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \ "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value"); if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) { esp_efuse_mac_get_default(efuse_mac); } switch (type) { case ESP_MAC_WIFI_STA: memcpy(mac, efuse_mac, 6); break; case ESP_MAC_WIFI_SOFTAP: if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) { memcpy(mac, efuse_mac, 6); mac[5] += 1; } else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) { esp_derive_local_mac(mac, efuse_mac); } break; case ESP_MAC_BT: memcpy(mac, efuse_mac, 6); if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) { mac[5] += 2; } else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) { mac[5] += 1; } break; case ESP_MAC_ETH: if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) { memcpy(mac, efuse_mac, 6); mac[5] += 3; } else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) { efuse_mac[5] += 1; esp_derive_local_mac(mac, efuse_mac); } break; default: ESP_LOGW(TAG, "incorrect mac type"); break; } return ESP_OK; } esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler) { for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) { if (shutdown_handlers[i] == handler) { return ESP_ERR_INVALID_STATE; } else if (shutdown_handlers[i] == NULL) { shutdown_handlers[i] = handler; return ESP_OK; } } return ESP_ERR_NO_MEM; } esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handler) { for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) { if (shutdown_handlers[i] == handler) { shutdown_handlers[i] = NULL; return ESP_OK; } } return ESP_ERR_INVALID_STATE; } void esp_restart_noos() __attribute__ ((noreturn)); void IRAM_ATTR esp_restart(void) { int i; for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) { if (shutdown_handlers[i]) { shutdown_handlers[i](); } } // Disable scheduler on this core. vTaskSuspendAll(); esp_restart_noos(); } /* "inner" restart function for after RTOS, interrupts & anything else on this * core are already stopped. Stalls other core, resets hardware, * triggers restart. */ void IRAM_ATTR esp_restart_noos() { // Disable interrupts xt_ints_off(0xFFFFFFFF); // Enable RTC watchdog for 1 second rtc_wdt_protect_off(); rtc_wdt_disable(); rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC); rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM); rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns); rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns); rtc_wdt_set_time(RTC_WDT_STAGE0, 1000); rtc_wdt_flashboot_mode_enable(); // Reset and stall the other CPU. // CPU must be reset before stalling, in case it was running a s32c1i // instruction. This would cause memory pool to be locked by arbiter // to the stalled CPU, preventing current CPU from accessing this pool. const uint32_t core_id = xPortGetCoreID(); const uint32_t other_core_id = (core_id == 0) ? 1 : 0; esp_cpu_reset(other_core_id); esp_cpu_stall(other_core_id); // Other core is now stalled, can access DPORT registers directly esp_dport_access_int_abort(); // Disable TG0/TG1 watchdogs TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE; TIMERG0.wdt_config0.en = 0; TIMERG0.wdt_wprotect=0; TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE; TIMERG1.wdt_config0.en = 0; TIMERG1.wdt_wprotect=0; // Flush any data left in UART FIFOs uart_tx_wait_idle(0); uart_tx_wait_idle(1); uart_tx_wait_idle(2); #ifdef CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY if (esp_ptr_external_ram(get_sp())) { // If stack_addr is from External Memory (CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY is used) // then need to switch SP to Internal Memory otherwise // we will get the "Cache disabled but cached memory region accessed" error after Cache_Read_Disable. uint32_t new_sp = SOC_DRAM_LOW + (SOC_DRAM_HIGH - SOC_DRAM_LOW) / 2; SET_STACK(new_sp); } #endif // Disable cache Cache_Read_Disable(0); Cache_Read_Disable(1); // 2nd stage bootloader reconfigures SPI flash signals. // Reset them to the defaults expected by ROM. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30); WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30); // Reset wifi/bluetooth/ethernet/sdio (bb/mac) DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST | DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST | DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST | DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST); DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0); // Reset timer/spi/uart DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_SPI2_RST | DPORT_SPI3_RST | DPORT_SPI_DMA_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST | DPORT_UART_MEM_RST); DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0); // Set CPU back to XTAL source, no PLL, same as hard reset rtc_clk_cpu_freq_set_xtal(); // Clear entry point for APP CPU DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0); // Reset CPUs if (core_id == 0) { // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs. esp_cpu_reset(1); esp_cpu_reset(0); } else { // Running on APP CPU: need to reset PRO CPU and unstall it, // then reset APP CPU esp_cpu_reset(0); esp_cpu_unstall(0); esp_cpu_reset(1); } while(true) { ; } } uint32_t esp_get_free_heap_size( void ) { return heap_caps_get_free_size( MALLOC_CAP_DEFAULT ); } uint32_t esp_get_free_internal_heap_size( void ) { return heap_caps_get_free_size( MALLOC_CAP_8BIT | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL ); } uint32_t esp_get_minimum_free_heap_size( void ) { return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT ); } const char* esp_get_idf_version(void) { return IDF_VER; } void esp_chip_info(esp_chip_info_t* out_info) { uint32_t efuse_rd3 = REG_READ(EFUSE_BLK0_RDATA3_REG); memset(out_info, 0, sizeof(*out_info)); out_info->model = CHIP_ESP32; out_info->revision = esp_efuse_get_chip_ver(); if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) { out_info->cores = 2; } else { out_info->cores = 1; } out_info->features = CHIP_FEATURE_WIFI_BGN; if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) { out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE; } int package = (efuse_rd3 & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S; if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 || package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 || package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) { out_info->features |= CHIP_FEATURE_EMB_FLASH; } }