introduced in e44ead5356
1. The int8M power domain config by default is PD. While LEDC is using
RTC8M as clock source, this power domain will be kept on.
But when 8MD256 is used as RTC clock source, the power domain should
also be kept on.
On ESP32, there was protection for it, but broken by commit
e44ead5356. Currently the power domain
will be forced on when LEDC is using RTC8M as clock source &&
!int8m_pd_en (user enable ESP_PDP_DOMAIN_RTC8M in lightsleep). Otherwise
the power domain will be powered off, regardless of RTC clock source.
In other words, int8M domain will be forced off (even when 8MD256
used as RTC clock source) if LEDC not using RTC8M as clock source, user
doesn't enable ESP_PDP_DOMAIN_RTC8M, or in deep sleep.
On later chips, there's no such protection, so 8MD256 could't be used as
RTC clock source in sleep modes.
This commit adds protection of 8MD256 clock to other chips. Fixes the
incorrect protection logic overriding on ESP32. Now the power domain
will be determiend by the logic below (order by priority):
1. When RTC clock source uses 8MD256, power up
2. When LEDC uses RTC8M clock source, power up
3. In deepsleep, power down
4. Otherwise determined by user config of ESP_PDP_DOMAIN_RTC8M,
power down by default. (This is preferred to have highest
priority, but it's kept as is because of current code structure.)
2. Before, after the macro `RTC_SLEEP_CONFIG_DEFAULT` decides dbias, the
protection above may force the int8m PU. This may cause the inconsistent
of dbias and the int8m PU status.
This commit lifts the logic of pd int8m/xtal fpu logic to upper layer
(sleep_modes.c).
Related: https://github.com/espressif/esp-idf/issues/8007, https://github.com/espressif/esp-idf/pull/8089
temp
As ESP32C3 does not have support for REF_TICK source clock, it is now not
possible to select it anymore.
Auto cfg clock has been improved for all boards.
components/os: Move ETS_T1_WDT_INUM, ETS_CACHEERR_INUM and ETS_DPORT_INUM to l5 interrupt
components/os: high level interrupt(5)
components/os: hli_api: meta queue: fix out of bounds access, check for overflow
components/os: hli: don't spill registers, instead save them to a separate region
Level 4 interrupt has a chance of preempting a window overflow or underflow exception.
Therefore it is not possible to use standard context save functions,
as the SP on entry to Level 4 interrupt may be invalid (e.g. in WindowUnderflow4).
Instead, mask window overflows and save the entire general purpose register file,
plus some of the special registers.
Then clear WindowStart, allowing the C handler to execute without spilling the old windows.
On exit from the interrupt handler, do everything in reverse.
components/bt: using high level interrupt in lc
components/os: Add DRAM_ATTR to avoid feature `Allow .bss segment placed in external memory`
components/bt: optimize code structure
components/os: Modify the BT assert process to adapt to coredump and HLI
components/os: Disable exception mode after saving special registers
To store some registers first, avoid stuck due to live lock after disabling exception mode
components/os: using dport instead of AHB in BT to fix live lock
components/bt: Fix hli queue send error
components/bt: Fix CI fail
# Conflicts:
# components/bt/CMakeLists.txt
# components/bt/component.mk
# components/bt/controller/bt.c
# components/bt/controller/lib
# components/esp_common/src/int_wdt.c
# components/esp_system/port/soc/esp32/dport_panic_highint_hdl.S
# components/soc/esp32/include/soc/soc.h
update all struct headers to be more "standardized":
- bit fields are properly wrapped with struct
- bitwidth sum should be 32 within same struct, so that it's correctly padded with reserved bits
- bit field should be uint32_t
- typedef volatile struct xxx{} yyy;: xxx must exists. refer: https://github.com/espressif/esp-idf/pull/3199
added helper macros to force peripheral registers being accessed in 32 bitwidth
added a check script into ci
By using IOMUX instead of GPIO Matrix for UART, it is now possible
on ESP32 boards to use the UART as a wake up source even if it is
not used as a console.
For other boards where this issue was not present, using IOMUX has
the advantage to be faster than using GPIO matrix, so a highest
baudrate can be used