When flash work in DIO Mode, in order to ensure the fast read mode of flash
is a fixed value, we merged the mode bits into address part, and the fast
read mode value is 0 (the default value).
Fixed the case when the first part of log was missed
this was happened when:
* CONFIG_CONSOLE_UART_CUSTOM option is selected (UART1)
* The selected CONSOLE_UART port is used also for the console component
* in code esp_restart() or abort() functions were called.
This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
This prevents a device from being bricked in case when both secure boot & flash encryption are enabled and encryption gets interrupted during first boot. After interruption, all partitions on the device need to be reflashed (including the bootloader).
List of changes:
* Secure boot key generation and bootloader digest generation logic, implemented inside function esp_secure_boot_permanently_enable(), has been pulled out into new API esp_secure_boot_generate_digest(). The enabling of R/W protection of secure boot key on EFUSE still happens inside esp_secure_boot_permanently_enable()
* Now esp_secure_boot_permanently_enable() is called only after flash encryption process completes
* esp_secure_boot_generate_digest() is called before flash encryption process starts
1. separate rom include files and linkscript to esp_rom
2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h"
3. Forward compatible
4. update mqtt
In the situation when bootloader was compiled for 240MHz, and app was
compiled for 160MHz, and the chip is a revision 0 chip, the
bootloader will assume that the application has also been running at
240MHz. This will cause the chip to lock up later. Modify this to use
a run time check of DPORT_CPUPERIOD_SEL, which indicates which of the
PLL frequencies was used.
Closes https://github.com/espressif/esp-idf/issues/2731.
Added:
* set a secure version in app/bootloader.
* description anti-rollback to ota part
* emulate the secure_version write and read operations
* efuse_em partition.
* a description about a rollback for native_ota_example.
Closes: TW26335
Bootloader used to calculate the number of cache pages assuming that
load address was aligned, while in reality load address for DROM and
IROM was offset by 0x20 bytes from the start of 64kB page. This
caused the bootloader to map one less page if the size of the image
was 0x4..0x1c less than a multiple of 64kB.
Reported in https://esp32.com/viewtopic.php?f=13&t=6952.
Added a new structure esp_app_desc_t. It has info about firmware:
version, secure_version, project_name, time/date build and IDF version.
Added the ability to add a custom structure with a description of the firmware.
The esp_app_desc_t is located in fixed place in start of ROM secotor. It is located after structures esp_image_header_t and esp_image_segment_header_t.
app_version is filed from PROJECT_VER variable (if set in custom make file) or PROJECT_PATH/version.txt or git repo (git describe).
Add API to get app_desc from partition.
If zero-overhead loop buffer is enabled, under certain rare conditions
when executing a zero-overhead loop, the CPU may attempt to execute an invalid instruction. Work around by disabling the buffer.
ROM definition of `abort` was removed in 9240bbb. The old definition
resulted in a panic due to a jump to a null pointer (abort member in
ROM stub table was zero). The new definition triggers a debug
exception if JTAG is connected, or goes into an infinite loop to be
reset by the WDT.
When CONFIG_ESP32_RTCDATA_IN_FAST_MEM is enabled, RTC data is placed
into RTC_FAST memory region, viewed from the data bus. However the
bootloader was missing a check that this region should not be
overwritten after deep sleep, which caused .rtc.bss segment to loose
its contents after wakeup.