* changing dependencies from unity->cmock
* added component.mk and Makefile.projbuild
* ignore test dir in gen_esp_err_to_name.py
* added some brief introduction of CMock in IDF
Sometimes the flash size read from bootloader is not correct. This may
forbid SPI Flash driver from reading the the area larger than the size
in bootloader header.
When the new config option is enabled, the latest configured
ESPTOOLPY_FLAHSIZE in the app header will be used to override the value
read from bootloader header.
Including:
1. Change the write bytes/read bytes parameter in the host driver into slicers to meet the requirements of complicated cases.
2. Refactor the esp_flash_api code a bit so that we can use the code in the ROM laster
3. Provide get_temp_buffer and release_temp_buffer in the os_functions when the buffer passed by application cannot be used directly.
4. Make timeout of operations configurable in the chip_driver.
5. Make dummy number configurable.
In commit 309376f51ae01bf0dcfa45d5b00a71657c3df7b2, it seems like regression
was added to use ROM level API for disabling flash write protection. This
started random firmware crashes (on specific modules) with exception
`IllegalInstruction` during encrypted flash writes.
Fix here removes relevant ROM API call, since disabling flash write protection
is already ensured by caller of this API.
Closes https://github.com/espressif/esp-idf/issues/5467
Flash write operation is broken down into smaller chunk writes. Size
of this chunk was previously set to 8K but that in-turn meant cache and
non-IRAM resident interrupts could stay disabled upto ~24msec for 8K flash
write operation. If chunk size is brought down to 256 (typical flash page size)
then it brings down cache and non-IRAM interrupts disable duration to ~1msec.
Fix here keeps defaults same but provides configuration option to tweak the
setting based on application requirement.
The SPI bus lock on SPI1 introduces two side effects:
1. The device lock for the main flash requires the
`CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION` to be selected, however this
option is disabled by default in earlier IDF versions. Some developers
may find their project cannot be built by their old sdkconfig files.
2. Usually we don't need the lock on the SPI1 bus, due to it's
restrictions. However the overhead still exists in this case, the IRAM
cost for static version of semaphore functions, and the time cost when
getting and releasing the lock.
This commit:
1. Add a CONFIG_SPI_FLASH_BYPASS_MAIN_LOCK option, which will forbid the
space cost, as well as the initialization of the main bus lock.
2. When the option is not selected, the bus lock is used, the
`CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION` will be selected explicitly.
3. Revert default value of `CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION`
to `n`.
introduced in 49a48644e42458366b2dd7b7d153acc943d50e0f.
Closes https://github.com/espressif/esp-idf/issues/5046
We used to manually specify the CS id. However after the SPI bus lock is
introduced, the lock is responsible to assign the CS lines and provide
the CS id. The esp_flash driver now depends on the ID assigned by the
SPI bus lock, the configuration field is deprecated.
The issue is introduced in 571864e8aeba85b941133766601543e0decd0faf. The
esp_flash API tries to clear the QE bit when the flash is not working in
quad modes.
However this introduces a regression, compared to earlier versions and
the legacy API. When the chip is not detected, the generic chip driver
is used, which cannot 100% handle the QE bit properly for all flash
vendors. There may be some flash chips (e.g. MXIC) that can be used in
dual modes by legacy API, but output wrong data when the esp_flash API
clears the QE bit in a wrong way.
This commit reverts the QE force clearing behavior, so that it's safer
for the generic chip driver to work under dual modes.